CKM Unitarity Test in Belle

OUTLINE

© Overture

- a brief introduction as if you are a 1st-year grad. student

9 The measurements

- CKM angles
- CKM sides -- very brief

9 A few "tensions"
Q Conclusion \& Epilogue

 Overture

To B, or not to B : that is the question

- adapted from W. Shakespeare

Historical Milestones

- 1957 Parity violation in ${ }^{60} \mathrm{Co}$
- 1964 CP violation in K^{0}
- 1967 Sakharov's 3 conditions
- 1973 KM mechanism
- 1977 Discovery of b quark
- ~1980 Proposal for B-factory
- 1987 B 0 mixing
- 1999 B-factories (Belle, BaBar) started
- 2001 CP violation in B^{0}
- 2004 Direct CP violation in B^{0}
- 2006 Bs mixing
- 2008 (I/2) Nobel Physics prize to K \& M

The B's Gallery

ARGUS $\mathrm{e}^{+} \mathrm{e}^{-}\left(\Upsilon_{4 \mathrm{~s}}\right) \quad$ PLB192, 245 (1987) Conclusive observation of B_{d}^{0} mixing Excess of like-sign lepton pairs

$$
e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}
$$

discovery of \boldsymbol{B} mesons (CLEO)
PRL 50, 88 I (1983)

$$
e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}
$$

discovery of \boldsymbol{B} mesons (CLEO)
PRL 50, 88I (1983)

Belle (2005)

ARGUS $\mathrm{e}^{+} \mathrm{e}^{-}\left(\mathrm{C}_{4 \mathrm{~s}}\right) \quad$ PLB192, 245 (1987)

 Conclusive observation of $\mathrm{B}^{0}{ }_{d}$ mixing Excess of like-sign lepton pairs
\Rightarrow Top quark heavy $\mathrm{m}_{\text {top }}>50 \mathrm{GeV}$

How to B?

- ete- B-factories (Belle/BaBar)
- clean environment, w/ tight kinematic constr.
- need to boost the B mesons
--> use asymmetric beams (e.g. $8+3.5$)
- main performers so far
- High-E hadron collisions (Tevatron/LHC)
- very large production cross-section
- but, bkg'd is large, too

Two asymmetric B-factories

PEP-II at SLAC

Belle/BaBar Luminosities

Integrated Luminosity(cal)

Belle detector

14 countries, 55 institutes, ~ 400 collaborators

BABAR detector

I I countries, 80 institutes, ~ 600 collaborators

Kobayashi-Maskawa (KM) ansatz

"CPV is due to an irreducible phase in the quark mixing matrix in 3 generations"

of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto Kobayashi and Toshihide Maskawa Department of Physics, Kyoto University, Kyoto

First 3rd-gen. particle (T) seen in 1975
(Received September 1, 1972)
In a framework of the renormalizable theory of weak interaction, problems of $C P$-violation are studied. It is concluded that no realistic models of $C P$-violation exist in the quartet scheme without introducing any other new fields. Some possible models of $C P$-violation are also discussed.

When we apply the renormalizable theory of weak interaction ${ }^{1)}$ to the hadron system, we have some limitations on the hadron model. It is well known that there exists, in the case of the triplet model, a difficulty of the strangeness changing neutral current and that the quartet model is free from this difficulty. Fur-

Flavor mixing and CKM matrix

- For quarks,
- weak interaction eigenstates \neq mass eigenstates
- mixing of quark flavors through a unitary matrix

$\left(\begin{array}{c}\boldsymbol{d}^{\prime} \\ \boldsymbol{s}^{\prime} \\ \boldsymbol{b}^{\prime}\end{array}\right)=\left(\mathrm{V}_{\mathrm{CKM}}\right)\left(\begin{array}{l}\boldsymbol{d} \\ \boldsymbol{s} \\ \boldsymbol{b}\end{array}\right)=\left(\begin{array}{lll}\mathrm{V}_{u d} & \mathrm{~V}_{u s} & \mathrm{~V}_{u b} \\ \mathrm{~V}_{c \boldsymbol{d}} & \mathrm{~V}_{c s} & \mathrm{~V}_{c b} \\ \mathrm{~V}_{\boldsymbol{t d}} & \mathrm{V}_{t s} & \mathrm{~V}_{t b}\end{array}\right)\left(\begin{array}{l}\boldsymbol{d} \\ \boldsymbol{s} \\ \boldsymbol{b}\end{array}\right)$

$$
\begin{gathered}
\underset{\text { parametriteization }}{\mathbf{V}_{\mathrm{CKM}}} \approx\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \\
|\lambda| \approx O(0.1)
\end{gathered}
$$

3 real parameters (λ, A, ρ) and 1 phase (η)

Test of Unitarity

$$
\begin{aligned}
& \mathrm{V}_{u d} \mathrm{~V}_{u b}^{*}+\mathrm{V}_{c d} \mathrm{~V}_{c b}^{*}+\mathrm{V}_{t d} \mathrm{~V}_{t b}^{*}=0 \\
& \mathrm{~V}_{u d} \cong \mathrm{~V}_{t b} \cong 1
\end{aligned}
$$

Unitarity triangle angles

BABAR：$\beta \quad \alpha \quad \gamma$
BELLE：$\quad \phi_{1} \quad \phi_{2} \quad \phi_{3}$
This talk：易 難 魔

Z．Ligeti，from plenary talk＠ICHEP 2004

How to measure?

Vub

正

즌 $V=\mid V \exp (i \phi)$
just overly simplified guidelines

- |V| from semi-leptonic decay rates
- ϕ from $C P$ asymmetries

Vtb

Measuring the CKM anlges

- Extract the three angles through time-dependent Acp meas'mt.

Z. Ligeti, ICHEP 2004

Measurement of $\sin 2 \phi_{1}$

slide by T. Hara for DIS 2010

T-dep’t CPV in B^{0} decays

${ }^{1} \Gamma_{B^{0}}(\Delta t)$
 $\Gamma_{\bar{B}^{0}}(\Delta t)$

$A_{C P}(\Delta t)$
$\equiv \frac{\Gamma_{\bar{B}^{0}}(\Delta t)-\Gamma_{B^{0}}(\Delta t)}{\Gamma_{\bar{B}^{0}}(\Delta t)+\Gamma_{B^{0}}(\Delta t)}$
$=\mathcal{S} \sin \Delta m \Delta t+\mathcal{A} \cos \Delta m \Delta t$

> e.g. for $\mathrm{J} / \psi K s$
> $S=-\xi_{\mathrm{CP}} \sin 2 \phi_{1}=+\sin 2 \phi_{1}$
> $\mathcal{A}=0$
> to a good approximation
> $\left(\xi_{\mathrm{CP}}: \mathrm{CP}\right.$ eigenvalue $)$

Mixing-induced CPV

Direct CPV

$$
(\mathcal{A}=-C \text { a la BaBar })
$$

The Golden mode for ϕ_{1}

$B^{0} \rightarrow J / \psi K^{0}$: high rate, theoretically clean

$T_{w o V_{t d}}$ vertices $e^{-i\left(2 \phi_{1}\right)}$

$$
e^{-i\left(2 \phi_{1}\right)}>\bar{B}^{0} \underbrace{B^{0}}_{e^{i 0}}
$$

Note: true for any B^{0} decay with no phase from decay amplitude

Other angles?

Unitarity triangle angles

Other angles?

Unitarity triangle angles

Other angles?

Unitarity triangle angles

The Penguin Decays

- (effective) Flavor-Changing NeutralCurrent process occurring at the loop level
- forbidden at tree level in the SM
- sensitive to NP in the loop

The Penguin Decays

- (effective) Flavor-Changing NeutralCurrent process occurring at the loop level
- forbidden at tree level in the SM
- sensitive to NP in the loop

The Penguin Decays

- (effective) Flavor-Changing NeutralCurrent process occurring at the
 loop level
- forbidden at tree level in the SM
- sensitive to NP in the loop

to measure ϕ_{2}

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \rho^{+} \rho^{-} \\
& \mathrm{B}^{0} \rightarrow \rho^{ \pm} \pi^{\mp} \\
& \mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}
\end{aligned}
$$

Tree diagram

Two phases

- mixing: $V_{t d}-->\phi_{1}$
- tree: $V_{u b}-->\phi_{3}$
$180^{\circ}-\left(\phi_{1}+\phi_{3}\right) \Rightarrow \phi_{2}$

penguin's shaking a tree...

What shall we do?

Isospin Analysis

Gronau \& London, PRL 65, 338 I (1990)

- Model-independent (symmetry-dependent) method
- $\operatorname{SU}(2)$ breaking effect well below present statistical errors
"Penguin pollution" can be removed

Isospin for $B^{0} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{aligned}
& I\left(B^{0}\right)=(1 / 2,-1 / 2) \\
& I\left(\pi^{+}\right)=(1,+1) \\
& I\left(\pi^{-}\right)=(1,-1)
\end{aligned}
$$

$A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) \propto A_{\frac{3}{2}, 2} \oplus A_{\frac{1}{2}, 0}$
B^{0}

due to bosonic symmetry, $\mathrm{I} \neq 1$ in the $\mathrm{B}->\pi \pi$ final state
for gluonic transition, $\Delta \mathrm{I}=0$. $\therefore \mathrm{I} \neq 2$ for gluonic penguins.

Isospin for $B^{+} \rightarrow \pi^{+} \pi^{0}$

$$
\begin{aligned}
& I\left(B^{+}\right)=(1 / 2,1 / 2) \\
& I\left(\pi^{+}\right)=(1,+1) \\
& I\left(\pi^{0}\right)=(1,0)
\end{aligned}
$$

no penguin!

due to bosonic symmetry, $\mathrm{I} \neq 1$ in the $\mathrm{B}->\pi \pi$ final state for gluonic transition, $\Delta \mathrm{I}=0$. $\therefore \mathrm{I} \neq 2$ for gluonic penguins.

- from the BaBar physics book

Figure 6-1. Isospin analysis of $B \rightarrow \pi \pi$ decays.
and similar isospin analyses for $B->\rho \rho$, etc.

$\operatorname{Acp}(\Delta \mathrm{t})$ from $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

PRL 98, 211801 (2007)

ϕ_{2} from $B^{0} \rightarrow \rho^{+} \rho^{-}$

BABAR, PRD 76, 052007 (2007)

$\mathcal{B}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)=\left(25.5 \pm 2.1(\text { stat })_{-3.9}^{+3.6}(\right.$ syst $\left.)\right) \times 10^{-6}$,
$f_{L}=0.992 \pm 0.024(\text { stat })_{-0.013}^{+0.026}($ syst $)$,
$S_{\text {long }}=-0.17 \pm 0.20(\text { stat })_{-0.06}^{+0.05}($ syst $)$,
$C_{\text {long }}=0.01 \pm 0.15($ stat $) \pm 0.06$ (syst).

Belle, PRD 76, 011104 (2007)

$$
\mathcal{A}_{L}=0.16 \pm 0.21(\text { stat }) \pm 0.07 \text { (syst) }
$$

$$
\mathcal{S}_{L}=0.19 \pm 0.30(\text { stat }) \pm 0.07(\text { syst })
$$

A, S : both consistent with 0

Other angles？

Unitarity triangle angles

BABAR：	β	α	γ
BELLE：	ϕ_{1}	ϕ_{2}	ϕ_{3}
	易	難	魔

GLW：Gronau，London，Wyler（200I）
ADS：Atwood，Dunietz，Soni（1997）
GGSZ：Giri，Grossman，Soffer，Zupan（2003）

фз from CPV in B -> DK (GGSZ)

- If both D^{0} and \bar{D}^{0} decay into the same final state (e.g., $K_{s} \pi^{+} \pi^{-}$), then $B^{+} \rightarrow D^{0} K^{+}$and $B^{+} \rightarrow \bar{D}^{0} K^{+}$amplitudes interfere. The mixed state is

$$
\left|\bar{D}^{0}\right\rangle=\left|\bar{D}^{0}\right\rangle+r e^{i\left(\delta+\phi_{3}\right)}\left|D^{0}\right\rangle
$$

- $B^{+} \rightarrow \bar{D}^{0} K^{+}$matrix element: $\mathcal{M}_{+}=f\left(m_{+}^{2}, m_{-}^{2}\right)+r e^{i\left(\delta+\Phi_{3}\right)} f\left(m_{-}^{2}, m_{+}^{2}\right)$
- $B^{-} \rightarrow \bar{D}^{0} K^{-}$matrix element: $\mathcal{M}_{-}=f\left(m_{-}^{2}, m_{+}^{2}\right)+r e^{i\left(\delta-\phi_{3}\right)} f\left(m_{+}^{2}, m_{-}^{2}\right)$

$$
f\left(m_{+}^{2}, m_{-}^{2}\right)
$$

$$
f\left(m_{-}^{2}, m_{+}^{2}\right)
$$

$B^{ \pm} \rightarrow$ no mixing, no t-dependence
D decays do not involve $V_{u b}$ or $V_{t d}$ \rightarrow no contribution to phase

The GGSZ method

Look for differences in $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{ \pm}$plots

Belle; hep-ex/0803.3375

Results from GGSZ method

Express in terms of measurables from $B^{ \pm}$
r_{B} : ratio of $D / \overline{\mathrm{D}} \mathrm{ampl}$.

$$
=0.16 \pm 0.07
$$

$\delta_{\mathrm{B}}: \mathrm{D} / \overline{\mathrm{D}}$ relative phase $\quad-0.1$
Different r_{B}, δ_{B} for each ${ }^{-0.2}$ mode $\mathrm{D}^{(*)} \mathrm{K}^{(*)}$

Indirect: $\phi_{3}=67.7_{-3.7}^{+4.5}\left({ }^{\circ}\right) \quad$ Combined: $\phi_{3}=75_{-22}^{+19}\left({ }^{\circ}\right)$

늠 $V=\mid V \exp (i \phi)$

- $|V|$ from semi-leptonic decay rates $\Gamma_{X \ell_{\nu}} \propto\left|V_{i j}\right|^{2}$
- ϕ from CP asymmetries
$-B \rightarrow X_{d} \gamma$
- B_{s} mixing
- $V_{c b}$
- $\mathcal{O}(1 \%)$ precision
just overly simplified guidelines

Roadmap for V_{ub} - "Morri"s chart"

Exclusive Analyses

- need form-factors for the non-pert. QCD effect

Hadronic current H^{μ} for $\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}$:

$$
H^{\mu}=\left\langle\pi^{+}\left(p^{\prime}\right)\right| u \gamma^{\mu} b\left|\bar{B}^{0}(p)\right\rangle=f^{+}\left(q^{2}\right)\left(p+p^{\prime}\right)^{\mu}
$$

In the limit of massless lepton,

$$
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2} d \cos \theta_{\ell}}=\left|V_{u b}\right|^{2} \frac{G_{F}^{2}}{32 \pi^{3}}\left|\vec{p}_{\pi}\right|^{3} \sin ^{2} \theta_{\ell}\left|f^{+}\left(q^{2}\right)\right|^{2}
$$

HPQCD, PRD73, 074502 (2006)

- Form-factor models based on
- Relativistic quark models (ISGW2)
- LCSR for low q2
- LQCD for high q2

How well can we measure the q^{2} dist. for $B \rightarrow X_{u} l v$?

PRL 104, 021801 (2010)

$B \rightarrow X_{u} \ell^{+} \nu$ (incl. anal.)

using Boosted
Decision Tree multivariate method
$\Delta \mathcal{B}\left(p_{\ell}^{* B}>1.0\right)=1.963 \times(1 \pm 0.088 \pm 0.081) \times 10^{-3}$
TABLE II. Values for $\left|V_{u b}\right|$ with relative errors (in \%).

Theory	$\left\|V_{u b}\right\| \times 10^{3}$	Stat	Syst	m_{b}	Th.
BLNP [5]	4.37	4.3	4.0	${ }^{+3.1}$	+4.3
DGE [6]	4.46	4.3	4.0	${ }^{+2.7}$	-3.0
GGOU [7]	4.41	4.3	4.0	1.9	${ }^{+1.0}$

most precise single
measurement of $V_{u b}$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ summary Inclusive vs. Exclusive

Inclusive
Exclusive

Exclusive < Inclusive ~1-2 σ, Greater discrepancy with z-fit.
Phillip Urquijo, Moriond EW, March 2010

What did we learn?

- $V_{\text {ub }}$ from inclusive avg. give $O(6 \%)$ error
- restricted phase-space is much better understood
- check with many complementary meas'mts.
- Exclusive analyses catch up
- powerful B-tagging
- improved V-recon. --> fine-binned q2 dist.
- unquenched L-QCD
- Systematics (esp. for SF param.) will improve with more statistics --> Belle-II !

Status of the CKM \triangle

Unitarity triangle angles BABAR：$\beta \alpha$ $\alpha \quad \gamma$ BELLE：$\quad \phi_{1} \quad \phi_{2} \quad \phi_{3}$易 難 魔

angles only

with everything

- Critical role of the B-factories in the verification of the KM hypothesis was recognized and cited by the Nobel Foundation
- A single irreducible phase in the weak int. matrix accounts for most of the $C P$ violation observed in the K 's and in the B 's
- $C P$-violating effects in the B sector are $\mathcal{O}(1)$ rather than $\mathcal{O}\left(10^{-3}\right)$ as in the K^{0} system.

- Two "tensions" in CPV measurements
- ϕ_{1} from $b \rightarrow s$ Penguin
- Direct CPV in $B \rightarrow K^{+} \pi$

- Two "tensions" in CPV measurements
- ϕ_{1} from $b \rightarrow s$ Penguin
- Direct CPV in $B \rightarrow K^{+} \pi$
- V_{ub} tension with
- $B^{+} \rightarrow \tau^{+} v$

Any Tensions?

- Two "tensions" in CPV measurements
- ϕ_{1} from $b \rightarrow s$ Penguin
- Direct CPV in $B \rightarrow K^{+} \pi$
- V_{ub} tension with
- $B^{+} \rightarrow \tau^{+} v$

If confirmed, these could be potential hints for NP...

ΔS puzzle

ϕ_{1} from $b \rightarrow s \bar{s} s$

e.g. $\mathrm{B}^{0} \rightarrow \phi \mathrm{~K}$

$T_{w o V_{t d}}$ vertices $e^{-i\left(2 \phi_{1}\right)}$

Relative phase $=e^{i 2\left(\phi_{1}+\Delta\right)} \neq e^{i 2 \phi_{1}}$
$\sin \left(2 \phi_{1_{\text {eff }}}\right) \neq \sin \left(2 \phi_{1}\right)$

$\Delta \sin 2 \phi_{1}^{\text {eff }}$ by $b \rightarrow s$ penguin (SM)

QCDF:H.Cheng, CK.Chua, A.Soni, PRD72, 014006 (2005), PRD72, 094003 (2005)

QCDF:M.Beneke, PLB620, 143 (2005)
SCET/QCDF : A.R.Williamson, J.Zupan PRD74, 014003 (2006)
SU(3):M.Gronau, J.Rosner, Z.Zupan, PRD74,093003 (2006)

tend to be hiaher than the observed $\subset P$ in $b \rightarrow c \bar{c} s$ transitions

$B \rightarrow \phi K_{S}$ and $B \rightarrow \eta^{\prime} K_{S}$

（In 2003，＞ 3σ effect seen in $\mathrm{B} \rightarrow \phi \mathrm{K}_{\mathrm{S}}$ with low stats）

Latest generation of $b \rightarrow s$ time dependent CPV analyses

－more data and advanced analysis for three－body decay modes
（Quasi－2body アプローチ）
Previous＇slice and dice＇analyses have been modified． Now use time－dependent Dalitz analyses with interference between multiple common final states for $t C P V$ in ϕK_{S} and $f_{0} K_{S}$

need a model of resonances that contribute in the Dalitz plot

 PRELIMINARY

0.67 ± 0.02 $0.26 \pm 0.0 .3$ $0.67+0.027$ $0.57 \pm 0.08 \pm 0.02$ $0.64 \pm 0.10 \pm 0.04$ 0.59 ± 0.07 $0.90+0.20$ 0.74 ± 0.17 $0.55 \pm 0.20 \pm 0.03$

$K \pi$ puzzle

$$
A_{K^{-} \pi^{+}} \equiv \frac{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)-\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)+\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} \quad<0 \text { by } \sim 8 \sigma
$$

$C P$ asymmetry in charmless hadronic B decays

CP violation in $B \rightarrow K \pi$

CPV in $B^{0} \rightarrow K^{+} \pi^{-}$is not unexpected, but ...

Direct CPV in $B \rightarrow K \pi$

Figure $\mathbf{2} \mid \boldsymbol{M}_{\mathrm{bc}}$ projections for $\boldsymbol{K}^{-} \boldsymbol{\pi}^{+}$(a), $\boldsymbol{K}^{+} \pi^{-}$(b), $\boldsymbol{K}^{-} \pi^{\mathbf{0}}$ (c) and $\boldsymbol{K}^{+} \boldsymbol{\pi}^{\mathbf{0}}(\mathrm{d})$. Histograms are data, solid blue lines are the fit projections, pointdashed lines are the signal components, dashed lines are the continuum background, and grey dotted lines are the $\pi^{ \pm} \pi$ signals that are misidentified as $K^{ \pm} \pi$. The M_{bc} projections are made by requiring $|\Delta E|<0.06 \mathrm{GeV}$ for $K^{ \pm} \pi^{\mp}$ and $-0.14<\Delta E<0.06 \mathrm{GeV}$ for $K^{ \pm} \pi^{0}$.

$A_{\mathrm{CP}}(K \pi)$ current status

Diagrams for $B \rightarrow K \pi$

Conjectures for $\Delta A_{C P} \neq 0$

- Enhanced color-suppressed tree?
- Can it be bigger than color-favored tree?
- EW penguin?
- EWP has negligible CP phase in SM, hence cannot affect $\Delta \mathrm{A}$ by much
- perhaps, picking up a new CP phase from NP?

I would love to talk about all the wonderful results on EWP, but I simply don't have time for it today...

one important but poorly constrained piece in the puzzle

$$
B \rightarrow K_{S}^{0} \pi^{0}
$$

$$
+1 \text { st obs. of } B \rightarrow K_{L}^{0} \pi^{0}
$$

3-d fit gives a signal of 657 ± 37 events Use flavor tagging to distinguish B^{0} and anti-B ${ }^{\wedge}$
(Using K_{S}^{0} decays that are inside the SVD, we measure TCPV)

 \qquad

$$
285 \pm 52 \pm 57 \text { (} 3.7 \sigma \text { incl. }
$$

systematics)

These modes will be very difficult at a hadron machine

Model-indep. detection of NP in the $B \rightarrow K \pi$ system

$$
\begin{gathered}
\mathcal{A}_{C P}\left(K^{+} \pi^{-}\right)+\mathcal{A}_{C P}\left(K^{0} \pi^{+}\right) \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}=\mathcal{A}_{C P}\left(K^{+} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}+\mathcal{A}_{C P}\left(K^{0} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \\
\mathrm{B} \rightarrow \mathrm{~K} \pi \\
\mathrm{~A}\left(\mathrm{~K}^{0} \pi^{+}\right)=0.009 \pm 0.025 \\
\mathrm{~A}\left(\mathrm{~K}^{+} \pi^{0}\right)=0.050 \pm 0.025 \\
\mathrm{~A}\left(\mathrm{~K}^{+} \pi^{-}\right)=-0.098 \pm 0.012 \\
\mathrm{~A}\left(\mathrm{~K}^{0} \pi^{0}\right)=-0.01 \pm 0.10
\end{gathered}
$$

Sum rule proposed by:
M. Gronau, PLB 627, 82 (2005); D. Atwwod, A. Soni, PRD 58, 036005 (1998).

$$
B^{+} \rightarrow \tau^{+} \nu
$$

PRL 97, 251801 (2006) arXiv:0809.3834 (2008)

PRD 77, 011107 (2008) arXiv:0809.4027

Motivations for $B^{+} \rightarrow \ell^{+} \nu$

(a)

(b)

$$
\Gamma\left(B^{+} \rightarrow \ell^{+} \nu\right)=\frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8 \pi}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- very clean place to measure f_{B} (or $V_{u b}$?) and/or search for new physics (e.g. H^{+}, LQ)
- but, helicity-suppressed: $\Gamma\left(B^{+} \rightarrow e^{+} \nu\right) \ll \Gamma\left(B^{+} \rightarrow \mu^{+} \nu\right) \ll \Gamma\left(B^{+} \rightarrow \tau^{+} \nu\right)$

($B^{+} \rightarrow \tau^{+} \nu$) Constraints on new physics

- Hou, PRD 48, 2342 (1993)

$$
\begin{aligned}
r_{H} & \equiv \frac{\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)}{\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)_{\mathrm{SM}}} \\
& =\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
\end{aligned}
$$

- (Figure) from Belle SL-tag results

$\left(B^{+} \rightarrow \tau^{+} v\right)$ compared with CKM fit

- $\mathcal{B}_{\mathrm{SM}} \propto\left(f_{B}\left|V_{u b}\right|\right)^{2}$
- f_{B} cancels if taken ratio with B^{0} mixing
- provides a constraint on $V_{u b}$ in CKM \triangle fit
- \exists a tension?

Concluding Remarks

B-Factories have confirmed the large $C P$ violation in particular, $B \rightarrow c \bar{C} K^{\circ}$ modes: $\sin 2 \phi_{1}=0.672 \pm 0.023$ ph precision! Now, the reference for the new physics search

slide by T. Hara for DIS 2010

- Status of the "tension"s
- There are a few interesting results from the B-factory experiments indicating hints of something unknown...
\star leptonic B decays
\star hadronic penguin decays
\star NP or not-NP, we do not have clear understanding, yet
- What's ahead
- (although I didn't say a word about it...) The case for flavor physics in the LHC era is still compelling
- LHC, esp. LHCb experiment will be great tools for heavyflavor physics
- But some aspects, e.g. modes with neutrino(s), will require Super-B (i.e. Belle-II)

Future prospects

extrapolations

$\Delta f_{\mathrm{B}}($ LQCD $)=5 \%(?) \quad$| $\int L \mathrm{Lt}$ | $\Delta \mathrm{B}(\mathrm{B} \rightarrow \tau \nu)$ | $\Delta\left\|\mathrm{V}_{\mathrm{ub}}\right\|$ |
| :---: | :---: | :---: |
| $414 \mathrm{fb}^{-1}$ | 36% | 7.5% |
| $5 \mathrm{ab}^{-1}$ | 10% | 5.8% |
| $50 \mathrm{ab}^{-1}$ | 3% | 4.4% |

Extrapolation: $B \rightarrow \phi K^{0}$ at 50/ab with presentWA values

This would establish the existence of a NP phase

Compelling measurement in a clean mode

on $K \pi$ puzzle

e.g. Belle II, $50 \mathrm{ab}^{-1}$

What we call the beginning is often the end And to make an end is to make a beginning.

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.
Through the unknown, unremembered gate
When the last of earth left to discover
Is that which was the beginning
T. S. Elliot, from "Four Quartets"

The (still) open questions

- Why flavors; why 3 ?
- Why the mass \& mixing patterns?
- Why/how did the antimatter disappear?
- Questions may remain unanswered even if SUSY or new physics is found at LHC and/or Super-B...
- But, step-by-step experimental approach in flavor physics, esp. in B physics is definitely needed to address these grand questions

Epilogue

Flavour Observables Sensitive to New Physics
$\Delta m_{K} \quad \epsilon_{K} \quad \epsilon^{\prime} / \epsilon_{K} B\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right) B\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right) \quad B\left(K^{+} \rightarrow I^{+} v\right)$
$\Delta m_{d} \quad A_{S L}\left(B_{d}\right) \quad S\left(B_{d} \rightarrow J / \psi K_{s}\right) \quad S\left(B_{d} \rightarrow \phi K_{s}\right)$
$\alpha(B \rightarrow \pi \pi, \rho \pi, \rho \rho) \quad \gamma(B \rightarrow D K) \quad$ CKM fits
$\Delta m_{s} \quad A_{S L}\left(B_{s}\right) \quad S\left(B_{s} \rightarrow J / \psi \phi\right) \quad S\left(B_{s} \rightarrow \phi \phi\right)$
$B(b \rightarrow s y) \quad A_{c P}(b \rightarrow s y) \quad S\left(B^{0} \rightarrow K_{s} \pi^{0} \gamma\right) \quad S\left(B_{s} \rightarrow \phi \gamma\right)$
$B(b \rightarrow d y) \quad A_{C P}(b \rightarrow d y) \quad A_{C P}(b \rightarrow(d+s) \gamma) \quad S\left(B^{0} \rightarrow \rho^{0} \gamma\right)$
$B\left(b \rightarrow s I^{+} I^{-}\right) \quad B\left(b \rightarrow d I^{+} I^{-}\right) \quad A_{F B}\left(b \rightarrow s I^{+} I^{-}\right) \quad B(b \rightarrow s v \bar{v})$

$$
B\left(B_{s} \rightarrow I^{+} I^{-}\right) \quad B\left(B_{d} \rightarrow I^{+} I^{-}\right) \quad B\left(B^{+} \rightarrow I^{+} v\right)
$$

$$
B(\mu \rightarrow e y) \quad B\left(\mu \rightarrow e^{+} e^{-} e^{+}\right)(g-2)_{\mu} \quad \mu E D M
$$

$B(\tau \rightarrow \mu y) \quad B(\tau \rightarrow e y) \quad B\left(\tau^{+} \rightarrow I^{+} I^{-} I^{+}\right) \quad \tau C P V \quad \tau E D M$

$$
B\left(D_{(s)}^{+} \rightarrow I^{+} v\right) \quad x_{D} y_{D} \quad \text { charm CPV }
$$

... add your favourite here ...

Will be Studied at Belle-II

Epilogue

$$
\begin{aligned}
& \text { "Imagine if Fitch and Cronin had stopped at the } 1 \% \text { level, } \\
& \text { how much physics would have been missed" } \\
& \text {-A. Soni@Super KEKB proto-collaboration meeting } \\
& \text { A lesson from history }
\end{aligned}
$$

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $K_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
-Lev Okun, "The Vacuum as Seen from Moscow"

$$
(1964) \mathcal{B}=2 \times 10^{-3}
$$

A failure of imagination, or lack of patience?

Thank you!

