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Quantum Mechanics (Chap. 3)
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— Meson wave function
— Baryon wave function
— Magnetic moments
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« How to study decay and scattering
problems by introducing Feynman
diagram techniques
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Feynman diagrams are pictorial representations of Feynman and his diagrams
AMPLTUDES of particle reactions, i.e scatterings e Ve
or decays. Use of Feynman diagrams can greatly
reduce the amount of computation involved in
calculating a rate or

cross section of a physical process, e.g.

muon decay: p—e"v,v, or e*e’— u'u scattering.

Like electrical circuit diagrams, every line in the diagram has a strict
mathematical interpretation. Unfortunately the mathematical overhead
necessary to do complete calculations with this technique is large and there
IS not enough time in this course to go through all the details. The details of
Feynman diagrams are addressed in Advanced course. For a taste and
summary of the rules look at Griffiths (e.g. sections 6.3, 6.6, and 7.5) or
Relativistic Quantum Mechanics by Bjorken & Drell.
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e Feynman Diagrams

Each Feynman diagram represents an AMPLITUDE (M).
Quantities such as cross sections and decay rates (lifetimes) are proportional to |M]|=.
The transition rate for a process can be calculated using time dependent perturbation

theory using Fermi’'s Golden Rule:

In lowest order perturbation
theory M is the fourier transform

. 27 ,
transition rate = ——| M |> x(phase space) | of the potential. M&S B.20-22, p295
h “Born Approximation” M&S 1.27, p17

The differential cross section for two body scattering (e.g. pp—pp) in the CM frame is:

2 .
do 1 0 a;=final state momentum
M&S B.29, p29¢ =— |M [? v= speed of final state particle
dQ  4n° v,v, V= speed of initial state

particle
The decay rate (I') for a two body decay (e.g. K= n*x~) in CM is given by:

Griffiths 6.32 r- SIPl |\ memass of parent
87thm2C p=momentum of decay particle

S=statistical factor (fermions/bosons)

In most cases |M|2 cannot be calculated exactly.
Often M is expanded in a power series.
Feynman diagrams represent terms in the series expansion of M.



P780.02 Spring 2003
L3

Feynman Diagrams —~ Richard Kass

Feynman diagrams plot time vs space: Moller Scattering e e~—e e~

M&S
style

sSpace

time

OR

final state

time
Y

initial state ¢

e

space

QED Rules
Solid lines are charged fermions
electrons or positrons (spinor wavefunctions)
Wavy (or dashed) lines are photons
Arrow on solid line signifies e~ or e*
e~ arrow in same direction as time
et arrow opposite direction as time
At each vertex there is a coupling constant
Vo, a= 1/137=fine structure constant
Quantum numbers are conserved at a vertex
e.g. electric charge, lepton number
“Virtual” Particles do not conserve E, p

virtual particles are internal to diagram(s)
for y's: E2—p220 (off “mass shell”)
in all calculations we integrate over the virtual
particles 4—momentum (4d integral)
Photons couple to electric charge
no photons only vertices
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- Feynman Diagrams

We classify diagrams by the order of the coupling constant:

Bhabha scattering: ete ——ete-

Amplitude is of order «.

Amplitude is of order o?.

Since aqep =1/137 higher order diagrams should be corrections to lower
order diagrams.

This is just perturbation Theory!!
« This expansion in the coupling constant works for QED since aqep=1/137
» Does not work well for QCD where oqcp *1
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3 Feynman Diagrams
For a given order of the coupling constant there can be many diagrams

Bhabha scattering: ete —e’

amplitudes can
interfere constructive
or destructively

y

Must add/subtract diagram together to get the total amplitude
total amplitude must reflect the symmetry of the process
e*e"—yy identical bosons in final state, amplitude symmetric under exchange of y,, v,.

- - -7 "N

e P = = = = = — - Y e >~ - s
l 1 + L /\/\/\
at RN

Moller scattering: e"e"—e~e™ identical fermions in initial and final state

amplitude anti—symmetric under exchange of (1,2) and (a,b)
6_1 > > e_a € 1 > > )
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. Feynman Diagrams

Feynman diagrams of a given order are related to each other!

ete —yy v’'s in final state

yy—>e'e” v's in inital state

¥ e’

ye —-ye” wavefunctions are related
to each other.

% Ncompton scattering  electron and positron
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Rates and Cross Sections |

For reaction
a+h — e+d
The cross section, o, is defined as the reaction rate
per target particle, 1, per unit incident flux, ¢»
I' = go
where 1 is given by Fermi's Golden Rule.
Example: Consider a single particle of type o

traversing a beam (area /\ ) of particles of type b of
number density 7,

t'fﬂ

Q-

In time A4t traverses a region containing vdt 1y,
particles of type b.

Interaction probability defined as ef-
fective cross sectional area occupied

by the odd Ly particles of type b
vol Anyo
A

Therefore the reaction rate is v o

= votn,o

(see Question 2 on the problem sheet)
Dr LA Thomsan Lent 2004
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\ Scattering in Q.M. |

REVISION (see Dr Ritchie’s QMII transparencies 11.8-11.15)
NOTE: Natural Units used throughout /i — ¢ = 1
p=~/h k — p = k etc.

Consider a beam of particles scattering in Potential V'(r)

—

Py
_\Fti B

W Scattering rate characterized by the interaction cross
section o

number of particles scattered/unit time
T =

incident flux
Use FERMI'S GOLDEN RULE for Transition rate, 1':
I' = 2x|M|*p(E})

where M is the Matrix Element and p{ £ ) = density of
final states.

W 1st Order Perturbation Theory using plane wave
solutions of form v+ = Ne {Et-P.I)
Require :
o wave-function normalization
matrix element in perturbation theory

L]
& expression for flux
o expression for density of states

Or MLA. Thomson Lent 2004



Normalization: Normalize wave-functions to one particle in
a box of side L

Matrix Element: this contains the physics of the interaction

M = (¢y|H)

M = [ﬂj;ﬁﬂjid:sf

M = [_-’Vrz iPr- Ty () NeiPiT g5
1 iP.Tyrp=y g

M = e Prvmd?r

where p = p; — pr
Incident Flux: Consider a “target” of area A and a beam of
particles traveling at v o towards the target. Any

incident particle with in a volume A will cross the target
area every second. Flux = number of incident particles

crossing unit area per second :

Lent 2004

32

number of incident particle
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Density of states: for box of side I states are given by

periodic boundary conditions:

ke = 2mn./L, ete.
= Pz = 2mng/L
py = 2mn,/L
b, p: = 2mn./L
' Volume of single state in
]. ! momentum space:
P |

\ '/‘ L T [ —sp 2_:1'
- ; - o : ( L J
pzﬁ—/%@

Number of final states between p — p -+ dp:
AN = p*dpdQ/(2n/L)"
coplpy) = dN/dp = p*dQ/ (2w /L)*
In almost all scattering process considered in these

lectures the final state particles have £ =& i and to a
good approximation £° = p* 4+ m? » o= p.
. dN d N dp
p(E) = -~ = -
dE dp dE

= E*dQ/(2=x/L)"

_ E%dQ 4 3
p(E) — [Efr]“L

Dr MLA_ Thomson Lent 2004
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% Putting all the separate bits together:

1
do = —j?r|“lf| p(Eys)
2 p 1
51 '|:ﬂ f-'
= [I° J.fr — [ &'l ri' r E L— df}
2,
der E? | 2
[ — . [ .-t:F] rV{ }d;
i} (2m)2 | -

The normalization cancels and, in the limit where the
incident particles have » = ¢ and the out-going particles
have £ == m — Ey [, arrive at a simple
expression. Apply to the elastic scattering of a particle from
in a Yukawa potential.

Scattering from Yukawa Potential

Lr(r'] S ig’ mr
| ir r
Py .
-_F:i () )
- - pi
M= /Ptpl‘ (r)d’i
i g —mr
e / // P eont” “sin@'drdf'dg
nJodo

Where for the purposes of the integration, the z-axis is been
defined to lie in the direction of p and @' is the polar angle
with respect to this axis.

Or MLA. Thomson Lent 2004



a5

gz oS~ TT '.3.'1'. _ g mr .
M= — [ [ [r:‘ Preosth _ p2ein @'d@ drdo
dmw Jo Jo o r

Integrate over ¢ and set i cos 6.

q'j oo 1 .
Mg, = —[ [ ret P e M dpdy
2 Jo J
. - . .
= i_.r . [ I[r:"'" pr 1P e MTdr
2i|p| Jo
2 oo - -
_ i [ ﬁ[ip mir & [i P +m‘Jr‘dr
2i|p| Jo
9° 1

1
2i|p| hflﬁl m)  (i[p| 4 m}J
g° { 2i|p| J
2ilp| L(—[p[* — m?)

9
M-h - (m2+|p|*) |

o da E* g’
giving = : : —
df2 (27)2 (m?2 + |p|?)?

* Scattering in the Yukawa potential introduces a term
(m* -+ |p|?) in the denominator of the matrix element -
this is known a the propagator.

Dr MLA. Thomson Lent 2004
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Rutherford Scattering I

Let 2 —+ 0 and replace g*

gives Coulomb potential:

r et = dmo
] qz g mr
Vir) = —
4w 7
Vir) = e/ r

Hence for elastic scattering in the Coulomb potential:

A s B

E? l6m2nt

(27)7  [p[*

[Pl 2| p,; [sind
[Pl 2K hill%
E* 1672 a®
(27)% 16K sin" &
ﬂ.‘z

7 - a0
AE? sin 5

e.n. The upper points are the
Gieger and Marsden data (1911)
for the elastic scattering of
particles as they traverse thin
gold and silver foils. The scatter-

ing rate, plotted versus sin” 2,

_ follows the Rutherford formula.

Len 2004




4.1 Decay Rates and Cross

Sections

T Mean life time

Meanletme

Probability of
decay per unit time

I° Decay rate of particles

dN (t) = —N (t)[dt

¥

N(t) = N(0)e™

1
T=—
/ I

Expectation
value of time t




4.1 Decay Rates and Cross
Sections

In scattering problems, the most interesting quantity is the cross
section of the target.

_ #of scattered particles
~ volume x time
_ #of beam particles
- volume

S

Ph

v, = velocity of beam particles

_ #of target particles
P volume




4.1 Decay Rates and Cross
Sections

N :2_7T|\(fi‘2,0f (Ef )

N

Final state density

Vi = [ d°xg7 ()V (%), (x)



4.1 Decay Rates and Cross
Sections

«——— Plane wave

-1
1()()_@6

Satisfying a
kinetic energy Energy conservation for the elastic scattering
equation
2 —>
¢ d°x =1
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Jecay

Sections
mk

p:(E) =

dQ

87°h°

p: (E)dE =

d*n

L3

N =

L

—

Rates and Cross
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4.1 Decay Rates and Cross
Sections

1 1 hk
pb:F’pt_F Vp = m
nS

PoV, Py

272(1)2
h \ L

do =

2 mk

[d3xe'®* My (x)
87°h°

ik
L3 L3

- dQ

dQ




4.1

Jecay

Sections

V(X)= -

—

X

2

Rates and Cross

_

Coulomb potential

J‘d 3;(>ei(Ei—Ef)';(V (;()

ezjd3§

2

47e

€

i(Ki—kt)-x

—

X

— —

\m—kf

2




4.1

Sections

—

d—Q 2 7h°

do ( m )2 (47) e*

‘ki—kf

=> Rutherford Scattering

4

—

AN

Decay Rates and Cross

[k —k: [ =2¢(-cow)
_a¢sirt 2
2
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Feynman Diagrams l

* The results of calculations based on a single

process in Time-Ordered Perturbation Theory
(sometimes called old-fashioned, OFPT)

depend on the reference frame.

* However, the sum of all time orderings is
not frame dependent and provides the basis
for our relativistic theory of Quantum
Mechanics.

% The sum of time orderings are represented by
FEYNMAN DIAGRAMS

Space

Time

Feynman
Diagram

* Energy and Momentum are conserved at the
interaction vertices

% But the exchanged particle no longer has
m5 = E5 — p3,itis VIRTUAL

Dr MLA_ Thomson Lent 2004
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Virtual Particles |

_ - Feynman
Diagram
o Tm—

Virtual Particles:

* Forces due to exchanged particle .\ which is
termed VIRTUAL.

* The exchanged particle is off mass-shell, i.e.
for the unobservable exchanged VIRTUAL
particle 2 #£ p* + 'm.i.

* ie.m*® = E5 — p3. does not give the
physical mass, rri.x . The mass of the virtual
particle m* = E% — p3 can be +ve or -ve.

Qualitatively: the propagator is inversely
proportional to how far the particle is off-shell.
The further off-shell, the smaller the probability of
producing such a virtual state.




Understanding Feynman Diagrams l

* Feynman diagrams are the language of
modern particle physics. They will be used
extensively throughout this course.

The Basic Building Blocks

g———¢ electron Note : the positron (&7 )
e— e posiiron line is drawn as a neg-
Y -
NN photon ative energy electron
traveling backwards in
Time time
The e~ — photon interactions

e Radiation Note: none of these pro-

cesses are allowed in

e

e->‘\N’\A.’T Annihil

+ ANNINUATIOE

o T ' isolation : Forbidden by

e . - )
. Pair Prod (I, p) conservation.
va\.{e

* The strength of the interaction between the
virtual photon and fermions is called the coupling
strength. For the electromagnetic interaction this
is proportional to electric charge «.



The Electromagnetic Vertex I

X The electromagnetic interaction is described
by the photon propagator and the vertex:

Electromagnetic TS
vertex € ’ﬁ T
L b COUPLING strength
€ 15 .t proportional to  the
fermion charge.

* All electromagnetic interactions can be
described in terms of the above diagram

* Always conserve energy and momentum +
(angular momentum, charge)

* QED Vertex NEVER changes flavour i.e.

e — e vyhutnote — p 7

% QED Vertex also conserves PARITY

% Qualitatively : ()+/cr can be thought of the
probability of a charged particle emitting a
photon, the probability is proportional to 1{{,.-2 of
the photon.



Physics with Feynman Diagrams I

Scattering cross sections calculated from:

* Fermion wave functions

* Vertex Factors : coupling strength
% Propagator

* Phase Space

Y L Propagator

’ YT . =
’ e N . Proton Current

Matrix element \ [/ factorises into 3 terms :

—iM = Electron Current
_!UJ LL#
K — Photon Propagator
=
X (i, te~" w,) Proton Current

The factors ~* and g*'" are 4 < 4 matrices which
account for the spin-structure of the interaction
(described in the lecture on the Dirac Equation).



Pure QED Processes I

Compton Scattering

e pr ﬂpawmur

M)
Yy @ ~ I[-'lﬂ']zu
Bremsstrahlung
v M ~ Fe.e.x
& |IM|? ~ 27"
Y ) T I{li'"J 7o
e
nucleus
e e Pair Pmdn._mtinn
e
M ~ e
Y |‘I.J’|2 ~ 7"
e (e I[l-.‘]is/.’.'\n
nucleus
7" Decay
2 ey T -'"".f o Jyealdye
Il:l} lrl.l |_"‘hln{|-a i .|'_;,II|! :
v e S I[-'li'-.'}l‘ai'.;'lln.‘3
VAN
u



Electron-Proton Scattering

+
e
b
-
J/p =

M

| M2

o

q M o~
IM|* ~

T~ I{-'li’-.'szi'_:'.l'\t1.‘3

5 u
. o
= u

Coupling strength determines ‘order of magnitude’ of
matrix element. For particles interacting/decaying via
electromagnetic interaction: typical values for cross

sections/lifetimes

) M

L™

ad

L™

[

.0
f.:"'\tl

Tern ~ 10 “mb

Tem ™ 10 0 5

o

e
{_j::e
I{-'l?».'_‘jzi'._a':'\nz

f
f
[ I{-'li'-»'}‘an;3

Lent 2004



“Spin-less” e-p Scattering I

- - — E
Py
e Ei (Z]
~
AL e? dmoe
M = — = —
@ g
From Handout 1, pages 31-34:
deo , 2
== Eﬂ'l_lﬁlfl'a -
df} (2m)3
(dmex)® B2 1 B2
= 27 — =
¢t (2m?® g
q* is the four-momentum transfer:
qf = q"q, = (Ey  E)?* (P i)
Ef + E! ~ 2E5E; — pe® — i + 2.
= 2m® - 2EpE; + 2|pg||p;| cos
neglecting electron mass: i.e. mﬁ = 0 and |ps| = Ef
qg° = 2EEf(1 - cosf)
q: = df:}'t-ﬁ}'_fh'ir]"g%
Therefore for ELASTIC scattering £; — K
do o
d  4E%sin' 2

2

i.e. the Rutherford scattering formula (Handout 1 p.36)

Or MLA. Thomsan

Len? 2004
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Before we start the real interactions it may be useful to train
ourselves in using the Feynman rules and deriving cross sections
and decay rates.

C
‘\ :
—1
A 0
p. |
] — The Feynman rule
> of the propagater



A A N~nRlirAatiA ~f CAavinrmmnanrn DiillAace
4.0 ApPPLHLatlOll VI reylilliall Nnuico

1. Draw all possible diagrams in a given order of coupling constant for the
particular process that is under consideration.

2. Assign all the momenta of internal and external lines for each diagram
satisfying the conservation of four momenta.

3. Give -1g factor for each vertex and

———— factor for the propagator
p;—mc

when the momentum is given by p. and the mass of the propagating
particleism..

4. Combine all the vertex and propagator factors to obtain the invariant
amplitude —iM
5. If the diagram includes the loop, integrate over the loop momentum g, 1.e.
d'q
| 20y
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A o~ A ~ ~
Application o

No propagator!




A D AN ~Ali~AnAnd A~
4.5 Appilicatio

¢ dp, ¢ dp. ' ot
dr = s [ p][ p3j<2n)5<pl—p2—p3)

(27)° 2E, )\ (27)° 2E,
or

cd®p, cd’p, (275 (p,

- 9 ;
th (27)°2E, (27)° 2E, \

- .

2

g

- P,)

de p J;dztpg(pz _mzcz)e(po)

c ;d’p, 2 2
2hm (27[)j :(p?,\)
d? —pﬂphg




A r) Al’\l’\l:hf\+ N\ N AL T VY A 'Y 'Y oY e ﬁl IAA
4.0 A\APPIHLatiull Ol r@}’l“”dll MuUlico
2 d p
9 C 2 2 2 .2
= : A —m_C
o, 2oy V2, l(p.~p.y -mic’)
e d[p.[p.|
= 9% s(m?c? + mc? —2m,E, —m’c?)

_47zhm E*\ A
2 2 2\

AT

47zhm AC o m, L
E,dE, =|p,[d|p,|c

87hm °c




Mj—\mf: —2m,m_)m? +m? —m? +2m,m. )
m, —Mg +chKmB _mC)(mA+mB +mC)(mA+mB _mc)
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N N
.0

)
—h
T

;

5

§

)

)

J

A o~ A ~ ~
Application o

(p,—p,) —m.c*=m:c’+m.c* —m.c” — ( p +m:c \/p +m§cz—p-p')

=(m2+m2-—m?)c’ - 2( p +mic? \/B'2+m§cz —‘EHB‘ co;@)

(p,—p,) —mic’=m.c’+m.c°—m:.c” — (\/p +m2c2\/6'2+m§c2+3p

—2 —
=(mf\+m§—m§)cz—2( P +micy prmic?

@ 1s the c.m. scattering angle between B and E




A r) W\ r\ 7~ I\ f\£ ‘_I\\IIAMAIA ﬁlllf\h
“4.0 L)[J UII Ul rFreylliliall Nulco
n*S d’p c dp, -
d M 3 4 Ix (2 o — —
7 \/{(p +mc)+|0} (m?c?)? ((2”) 2E, ]((2 ) ZEJ Gy o PP m P mP)
hS c d°p. | c dp s
=M 3 L x(27)' 6 o
M| o5 ey L(Zﬂ)g E. I(Zﬂ)g 2E4j (27)"5*(p,+ P, — P, — P,)
hS C dsﬁ 4 2 2 2
do =|M ;=0 (p, —m'C’)
7 =MI /p(p +m2c?)? (27)" 2E,
] .= — 2 |— 1 .
using d psz‘p3 d‘p3 dQ=C—2 E.dE.dQ




A r) AI’\I’\':AA*I/\I"\ f\£ ‘_/\\llf\Mﬁlf\ ﬁlllf\h
4.0 A\ApPPIHCLCaAtloll O Feylliliall NMulco
d(f 2 hZS 2
] — L1de[plls((p, + p, - ) —myic)
dQ 8\/p (p +m2C2) (272')C2
=M[" —= j—lzs |p (4(Ez+miC2)2—45\/62+m§02j
8\/p p +mic?)? o7 ¢
M et e [pfo[ B —cp e mic
8p (p +mict): 87°C 4 [p 4 mic?
2 n’s|p)
:‘M‘ - 2 2\~
167)(p +mic*)|p

—2

where \/p'2+m§c2 =4 p +m.’




—2 —2
(mf\+m;—m§)c2—2( D +mic’y p" +mic’ —

BHB‘ COS 6?)

1
1
+

—2 —2
(mf\+m;—m§)c2—2( D +m§cz\/p' +mic? +

BHH‘ CoS 9)

where ‘E‘ = \/62 +(m?—m?2)c? and the statistical factor S = %
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In the zero mass limit,m, =m_=m_ =0

( \°
do 1) ng
I~ A — |3
Ul L 1N 2
\167r‘p‘ sin 9/
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Quantum
Electrodynamics

QUANTUM ELECTRODYNAMICS: is the quantum theory of
the electromagnetic interaction.

CLAS:SIC&L FICTURE: Action at a distance : forces arise
from E and B fields. Particles act as sources of the fields

» V().

CQL.E.D. PICTURE: Forces arise from the exchange of virtual
field quanta.

Dr MLA. Thomson Lent 2004




Interaction via Particle Exchange

NON-EXAMINABLE
FERMI'S GOLDEN RULE for Transition rate, I' ¢;:

) 2m 2 :
Cyi = TI-"‘-f.fz'l Pl Ey)

plEy) = density of final states.
* From 1" order perturbation theory, matrix element
pe ¥;
Myg;:
My = (g |H|;)
where H' is the operator corresponding to the
perturbation to the Hamiltonian.

* This is only the 1°* order term in the perturbation
Y P
expansion. In 2™ order perturbation theory:

1
Mg — My 4 Z |h‘1fj|n|h'1ji|
Jj#i ! 4

where the sum is over all intermediate states j, and E;
and £; are the energies of the initial and intermediate state

X For scattering, the 1*' and 29 order terms can be

viewed as:

Lent 2004



Consider the particle interaction
i =b—=c4d
which involves the exchange a particle .\ . This could be
the elastic scattering of electrons and protons, e.g.
e p—+ e pwhere X\ is an exchanged photon.

X One possible space-time picture for this process is

M

=¥ v
~ A— L I
2 (® & . .
o & \Yl @ Initial State, 1: a+b
o Final State, f: c+d
'Pi__.——-—~—_'*7—~—-—-__ Intermediate State, :
b Ve d
i . L b+e+ X
i i f
Time
* The Time Ordered interaction consists of @ — ¢ <+ A
followed by b + X — d. For example ¢, p; — CrPy
has the electron emitting a photon (. P EpT) ) followed

by the photon being absorbed by the proton (p;~ — py).
X The corresponding term in 2% order PT:
(g [FL o) (ol [ )

E; — E;
{i.-"'.r|I:]r|’ "X '-'-::"ii.".'-." 'X |[:I’|4 '..:5'
(Eo + £y) — (E.+ Ex + Ey)
{t";llfl[:lrlj Px In'-:!' {tu';'l.'J 'x |I:]’|! -”:!.

(Eo — B £y

Dr MLA. Thomson Lent 2004



Before we go any further some comments:

* The superscript ab on Pvl';.':-’ indicates the time ordering
where o interacts with X' before b

consequently the results are not Lorentz Invariant
i.e. depend on rest frame.
* Momentum is conserved ina — ¢ + X and
b+ X —d.
* The exchanged particle X is ON MASS SHELL:

2 2 2
Ey —py = my

* The matrix elements {1 |H'| 2"y v,) and
{11/ |[H'|22, ) depend on the “strength” of the
interaction. e.g. the strength of the v&— and 4 p
interaction which determines the probability that an
electron{proton) will emit(absorb) a photon.

* For the electromagnetic interaction:
(B ) = e (abulz o)

for a photon with polarization in the z-direction. (see D)
Ritchie's QM Il lecture 10)

* Neglecting spin (i.e. for assuming all particles are
spin-0 i.e. scalars) the ME becomes:

{‘i"d|f'1’|-'~'.x thy) = ¢

* More generally, {t;':d|I:I’|A 'y Uy = ¢, where () is the
interaction strength.
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Now consider the other time ordering b — d + X
followed by a + X — b

| rl |
A——d_ 1"j:'i i

0| +

b : o b : vf :
i ] f i i f

Space
Space

Time Time

The corresponding term in 2™ order PT:
(el EL 1) x ) (i [EE )
(Ea + Ev) — (Ea+ Ex + E,)
':*-""v|I:I’|J X Va ) (Patl x |I:I’|" ')

(Eyw — Eq — Ex)
(a1 |1 o) (bt x [ o)

(E, — Eq — Ex)
Assume a common interaction strength, «, at both vertices,

2 1
i ] ] K ]
(Ey — Eq — Ex) 2Ex

WARNING : | have introduced an (unjustified) factor of
f This arises from the relativistic normalization of the
wave-function for particle X (see appendix). For initial/final
state particles the normalisation is cancelled by
corresponding terms in the flux/phase-space. For the

“intermediate” particle X no such cancelation occurs.
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Now sum over two time ordered transition rates

My = f"v"_[';.':' : ]f"v'l"".'i'

since £, 4+ FE, = E.+ E,
= fﬁh fii - EL: Iﬂu
giving: . 1 1 1
My = ¢° L — ) X —
-E-'I-u'blr:'bl.‘. -E-'I----E-'Irrbl.‘. F 2-&".‘.
2 1 1 ) 1
ij b
. L-E:'Ill '-E:'If!'-E:'I.‘; -E:'Ill'-E:'lr!_'--E'l."; F Z-E:'I.";
3 2E 1
= g - X -
(B, — E.)? — ES 2By
From the first time ordering:
bfl = (Pa — pe)? 4 mi
therefore 2
My = — - .
(fﬁu fﬁn}z (Ihi I]cjj T”_\
a2
My = ——
d q* — m<,
with g° = q*q, = E* — |p|*

where (£, |p|)
virtual particle.
depends on g*

. 1 1 ) 1
] 1 W
. [fﬂ.-fﬁrfﬁx fﬁriﬁd—fgﬁ zfﬁx

are energy/momentum carried by the
The SUM of time-ordered processes
and is therefore Lorentz invariant ! The

‘invariant mass’ of the exchanged particle, '\,

m2 = EZ2

inw
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The term 2 2

is called the PROPAGATOR

It corresponds to the term in the matrix element arising
from the exchange of a massive particle which mediates the
force. For massless particles e.g. photons :

1

q2

NOTE: g is the 4-momentum of the exchanged particle
(@* = q*q, = E* — |p]?)

Previously (page 25 of HANDOUT 1) we obtained the matrix
element for elastic scattering in the YUKAWA potential:

2

MYUK — _ g
fi  (mAp?)
For elastic scattering £x = 0,and ¢* = — |p|*
TK 2
MUE - 1
fi i T

Which is exactly the expression obtained on the previous
page. Hence, elastic scattering via particle exchange in 2nd
order P.T. is equivalent to scattering in a Yukawa potential
using 1st order P.T.
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Action at a Distance

NEWTON : “..that one body can act upon
another at a distance, through a vacuum, without
the mediation of anything else,..., is to me a great
absurdity”

* In Classical Mechanics and non-relativistic
Quantum Mechanics forces arise from
potentials V' (r') which act instantaneously
over all space.

% |n Quantum Field theory, forces are mediated
by the exchange of virtual field quanta - and
there is no mysterious action at a distance.

* Matter and Force described by ‘particles’



