High Energy Physics

Data Processing

Kihyeon Cho

Syllabus

- Introduction (Chap. 1)
- Special Relativity (Chap. 2)
- Special Relativity
- Symmetry (Group)
- Quantum Mechanics (Chap. 3)
- Detector
- Data Processing
- Feynman diagram (Chap. 4)
- QED (Chap. 5)
- QCD (Chap. 6)
- Weak interaction (Chap. 7)

What cover In this Chapter?

- High Energy Physics
- Data Processing
- Fitting
- Conclusions

High Energy Physics

High Energy Physics

What is World Made of?

How to know any of this? (Testing Theory)

- Example
- Light bulb (Source)
- Tennis ball (target)
- Eye (detector)

How to detect?

How do we experiment with tiny particles? (Accelerators)

- Accelerators solve two problems:
- High energy gives small wavelength to detect small particles.
- The high energy create the massive particles that the physicist want to study.

High Energy Physics Team

To probe the Standard Model and search for New Physics

cf. LHCb

CHion EnerayPhysicsintho frocre

Energy frontier experiments LHC, ILC, ...

Higgs, SUSY, Dark matter, New understanding of space-time...

Lepton number nonconservation...

CP asymmetry, Baryogenesis,

 Left-right symmetry, New sources M. Yamakuchi, Belle II meeting (2008)
Heavy Flavor Physics Experiments

	Belle/Belle II	CDF	LHCb
Year	$1998-2010$ (Belle) $2014-\quad$ (Belle II)	$2001-$	$2009-$
Place	KEK, Japan	Fermilab, USA	CERN, Europe
Collaboratio n	$13 / 47 / \sim 300$ (Belle II) $($ Nat./Ins./member)	$15 / 63 / 620$	$15 / 54 / 730$
σ	1 nb		
$(10 \mathrm{GeV})$	$150 \mu \mathrm{~b}$ $(2 \mathrm{TeV})$	$300 \sim 500 \mu \mathrm{l}$ $(7 \sim 14 \mathrm{TeV})$ Current	$1 \mathrm{ab}^{-1}$

Data Processing

Why do we do experiments?

- Parameter determination
- To set the numerical values of some physical quantities
- Ex) To measure velocity of light
- Hypothesis testing
- To test whether a particular theory is consistent with our data
- Ex) To check whether velocity of light has suddenly increased by several percent since beginning of this year

Type of Data

- Real Data (on-site)
- Raw Data : Detector Information
- Reconstructed Data: Physics Information
- Stream (Skim) Data : Selected interested physics
- Simulated Data (on-site or off-site)
- Physics generation : pythia, QQ, bgenerator, CompHEP, ...
- Detector Simulation : Fastsim, GEANT, ...

Typical Research Procedure

Off-sites (KISTI + other institutions)

On-sites (Experimental sites)

Error (σ)

- Error
- Error : the difference between measurement and true value
- True value
- We don't know it
- Statistical error
- Error due to statistical fluctuation
- Systematic error
- More in nature of mistakes due to equipments and experimentalists
- Experimental value : Meas. \pm stat. error \pm sys. error Example) $m(t o p)=175.9 \pm 4.8 \pm 5.3 \mathrm{GeV} / \mathrm{c}^{2}$ (CDF, 1998)

Why estimate errors?

- To know how accuracy of the measurement
- Example
- The conventional speed of light $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
- When the new measurement $\quad c=3.09 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
- Case 1. If the error is ± 0.15, then it is consistent.
- Conventional physics is in good shape.
- 3.09 ± 0.15 is consistent with $2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
- Case 2. If the error is ± 0.01, then it is not consistent.
- 3.09 ± 0.01 is world shattering discovery.
- Case 3. If the error is ± 2, then it is consistent.
- However, the accuracy of 3.09 ± 2 is too low.
- Useless measurement
\Rightarrow Whenever you determine a parameter, estimate the error or your experiment is useless.

Examples) Bad and Good

```
\bulletL (Integrated Lum.) : 5169.26 nb-1 +/- 0.02
-Nsig : 4403
-A (Total acceptance for W->enu) : 0.22212
-Cross section * BR = Nsig / (A * L) = 4403 / (0.22212*5169.26)
= 3.83471 nb
```

Cdfnote 6681,
Using $720 \mathrm{pb}^{-1}$ of good Run II CDF data we measure
$\sigma \cdot B(p \bar{p}-W \rightarrow \epsilon \nu)=\left(2.773 \pm \pm 0.015_{\text {stat }} \pm 0.04_{\text {gys }} \pm 0.165_{\mathrm{mm}}\right) \mathrm{ll}$.
and
${ }_{2} \cdot \operatorname{Br}\left(Z^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=260.9 \pm 6.3(\mathrm{stat}.) \pm 6.7(\mathrm{syst}.) \pm 15.7(\mathrm{hmm}) \mathrm{ph}$

Background Estimations

Integrated Lum. : 204.563 +/- 12.0$N_{\mathrm{exp}}=\int L d t \times \sigma \cdot B r \times(\varepsilon \cdot A)$			
MC(pythia)	$\varepsilon \cdot A$	$\sigma \cdot \mathrm{Br}(\mathrm{Pb})$	$N_{\text {exp }}$
$W \rightarrow e v$	$\begin{aligned} & 422976 / 2092000= \\ & 0.202187 \end{aligned}$	$\begin{aligned} & \text { (odf 6681) } \\ & 2753.0+/-190 \end{aligned}$	$113864+/-7858$
$W \rightarrow \tau \nu$	$\begin{aligned} & 1178 / 458000= \\ & 0.002572 \end{aligned}$	$\begin{aligned} & \hline \text { (odf } 6447 \text {) } \\ & 2620.0+/-270 \\ & \hline \end{aligned}$	1379 +/-142
$Z / \gamma \rightarrow e e$	$\begin{aligned} & 37241 / 2019500= \\ & 0.018441 \end{aligned}$	$\begin{aligned} & \text { (odf 6281) } \\ & 261.5+/-31.9 \end{aligned}$	987+/-120
$Z / \gamma \rightarrow \tau \tau$	$\begin{aligned} & 1408 / 504000= \\ & 0.002794 \end{aligned}$	$\begin{aligned} & \text { (odf6281) } \\ & 261.5+/-31.9 \end{aligned}$	$149+/-18$
$\bar{t} \bar{\square}$	$\begin{aligned} & 43649 / 732500= \\ & 0.059589 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { (odf6802) } \\ 4.7+/-2.4 \\ \hline \end{array}$	$57+/-29$
$Q C D_{\text {data }}$	-	-	3933 +/-207 (stat)

Feb. 10. 2004
VEGY meeting

Good

How to reduce errors?

- Statistical error
- Repeated measurement
- N : the expected number of observation
- $\sigma=\operatorname{Sqrt}(N)$: the spread
- Systematic error
- No exact formulae
- Ideal case : All such effects should be absent.
- Real world: An attempt to be made to reduce it.

How to solve systematic errors?

- Use constraint condition
- Ex) Triangle
- Calibrations
- Energy and momentum conservation
- E (after) $-E($ before $)=0$
- $\mid P($ after $)|-| P($ before $) \mid=0$

How small of the systematic error?

- Systematic errors should be around statistical errors

The meaning of σ (error)

- Distributions $x->n(x)$
- Discrete
- ex) \# of times $n(x)$ you met a girl at age x
- Continuous:
- ex) Hours sleep each night (x), \# of people sleeping for time.
\Rightarrow For an even larger number of observation and with small bin size, the histogram approach a continuous distribution.
- Mean and Variance
- Gaussian distribution
- In case of larger number of observation
- It is important for error calculations

Tracking Performance

Mean and Variance

	True Value	Measurement
Mean	μ	\bar{x}
Variance	σ^{2}	
Standard deviation	σ	s^{2}

In fact, we don't know the true value in the real world.

Mean

- Mean
- N events has the value of ($x 1, x 2, x 3, \ldots x N$)

$$
\bar{x}=\frac{\sum x_{i}}{N}
$$

- Median - Observation or potential observation in a set that divides the set so that the same number of values, it is the middle value; for an even number it is the average of the middle tow
- Mode - Observation that occurs with the greatest frequency
- When do not know true válue

Variance

- Variance
- When know true value

$$
s^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

- When do not know true value

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N-1}
$$

Accuracy (δ)

- In order to know the accuracy of the measurement

$$
\delta=\frac{s}{\sqrt{N}}
$$

Gaussian Distribution

- In case of large size of data
- Gaussian distribution is the fundamental in error treatment.

Gaussian Distribution (cont'd)

- The normalized function

$$
y=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}
$$

- Mean (μ)
- Width (σ)
- Width (σ) is smaller, distribution is narrower.
- Properties

$$
\int_{\mu-\sigma}^{\mu+\sigma} f(x) d x=0.68
$$

Gaussian Distribution (cont'd)

- Mean (μ) is same as zero.
- However width (σ) is different.

Examples (Gaussian $+B G$)

A Rooplot of "Mass $(\psi(2 s)$)"

D.J.Kong (2004.3.4)

CDF Secondary Vertex Trigger

NEW for Run 2 -- level 2 impact parameter trigger
Provides access to hadronic B decays

Sionificant Fioure

- The measured value has meaning by significant figures
- Significant Figure
- It includes the first figure of uncertainty
- All the figures between LSD (least significant digit) and MSD(Most significant digit)
- LSD
- If there is no point: The far right non-zero figure ex)23000
- If there is point: The far right figure ex) 0.2300
- MSD : The far left non-zero figure

Significant Figure (Example)

- 4 digit : 1234, 123400, 123.4, 1000.
- 4 digit: 10.10, 0.0001010, 100.0, 1.010×103
- 3 digit : $1010 \quad$ cf) 1010. (Four digit of significant figure)

The calculation

- Add and Subtract
- The last result is decided by the minimum point of calculations
- Example)

123
$+\quad 5.35$
+0.0003 (1 digit of SF)
1.0004 (5 digit of SF)

Calculations (cont'd)

- Multiply and Divide
- Same as the minimum digit of significant figure
- Example)

$$
\begin{aligned}
16.3 \times 4.5 & =73.85 \\
& =73
\end{aligned}
$$

Propagation of Errors

- Suppose that $\left(x_{1}, x_{2}, \ldots\right)$ is the variables, then variation of the function of $F\left(x_{1}, x_{2}, \ldots\right)$ is as follows:
- In case that there is no correlation between variables

$$
\sigma_{F}^{2}=\left(\frac{\partial F}{\partial x_{1}}\right)^{2} \sigma_{1}^{2}+\left(\frac{\partial F}{\partial x_{2}}\right)^{2} \sigma_{2}^{2}+\left(\frac{\partial F}{\partial x_{3}}\right)^{2} \sigma_{3}^{2} \cdots
$$

Propagation of Errors (continued)

- Suppose that $\left(x_{1}, x_{2}, \ldots\right)$ is the variables, then variation of the function of $F\left(x_{1}, x_{2}, \ldots\right)$ is as follows:
- In case that there is correlation between variables

$$
\sigma_{F}^{2}=\sum_{i, j}\left(\frac{\partial F}{\partial x_{i}}\right)\left(\frac{\partial F}{\partial x_{j}}\right) \sigma_{i} \sigma_{j}
$$

\Rightarrow Let us consider only non-correlation case.

Combining Errors

- Add or Subtract $\left(\mathrm{F}=\mathrm{x}_{1}+\mathrm{x}_{2}\right.$ or $\left.\mathrm{F}=\mathrm{x}_{1}-\mathrm{x}_{2}\right)$

$$
\sigma_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

Example) $x_{1}=100 . \pm 10$.

$$
\begin{gathered}
+x_{2}=400 . \pm 20 . \\
- \\
F=500 . \pm 22 .
\end{gathered}
$$

Example) The error of the measurement

$$
\sigma=\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {sys }}^{2}}
$$

Combining Errors (cont’d)

- $F=a x$ (a is constant)

$$
\sigma_{F}=a \sigma
$$

$$
\text { Example) } \begin{aligned}
& x=100 . \pm 10 \\
& \mathrm{a}=5 \\
&-------- \\
& F=500 . \pm 50
\end{aligned}
$$

Combining Errors (cont’d)

- Multiplication $\left(F=x_{1} \cdot x_{2}\right)$

$$
\sigma_{F}=x_{1} x_{2} \sqrt{\left(\sigma_{1} / x_{1}\right)^{2}+\left(\sigma_{2} / x_{2}\right)^{2}}
$$

Example) $x_{1}=100 . \pm 10$.

$$
\begin{aligned}
x_{2} & =400 . \pm 20 . \\
& =- \\
F & =(400 . \pm 45 .) \times 10^{2}
\end{aligned}
$$

Combining Errors (cont’d)

- Division ($F=x_{1} / x_{2}$)

$$
\sigma_{F}=\left(x_{1} / x_{2}\right) \sqrt{\left(\sigma_{1} / x_{1}\right)^{2}+\left(\sigma_{2} / x_{2}\right)^{2}}
$$

Example) $x_{1}=100 . \pm 10$.

$$
\begin{gathered}
x_{2}=400 . \pm 20 \\
\\
F=0.250 \pm 0.028
\end{gathered}
$$

Combining results Using weighting factor

- Cases
- With different detection efficiencies (Runl, Runll)
- With different parts of apparatus (SVX, COT)
- With different experiment (CDF, D0)
- With different decay mechanisms ex) Bs->Psi(2s) Phi

1) Psi(2s) ->J/Psi mu+ mu-
2) $\operatorname{Psi}(2 s)->~ m u+m u-$
ex) D0-> KsKs
3) $\mathrm{D} *+->\mathrm{DO} \mathrm{pi}+$
4) $\mathrm{D} * 0->\mathrm{DO} \mathrm{piO}$

Combining results Using weighting factor (cont’d)

- Average
- There is N data whose values are $\left(x_{1}, x_{2}, \ldots x_{k}, \ldots x_{N}\right)$
- Suppose that the error of X_{k} is σ_{k}

$$
\bar{x}=\frac{\sum w_{k} x_{k}}{\sum_{k} w_{k}}
$$

where weighting factor

$$
w_{k}=1 / \sigma_{k}^{2}
$$

- Error : $\quad \sigma^{2}=1 / \sum w_{k}$

Ex) World Average of $\sin (2 \beta)$

Ex) B^{0} lifetime summary

Ex) CDF B_{d} Mixing

Upper Limit

- Measurement ($B=B_{m} \pm \sigma$)
- Observation ($\mathrm{B}_{\mathrm{m}}>5 \sigma$)
- Signal is greater than 5 sigma of error.
- Evidence ($3 \sigma<\mathrm{B}_{\mathrm{m}}<5 \sigma$)
- Signal is greater than 3 sigma of error, however less than 5 sigma.
- Upper Limit $\left(3 \sigma>B_{m}\right)$
- Signal is less than 3 sigma.

Upper Limit $\mathrm{B}_{\text {I }}$ (cont'd)

- Method I. General Case

$$
\begin{array}{r}
\text { Measurement } \mathrm{B}=\mathrm{B}_{\mathrm{m}} \pm \sigma \\
\mathrm{B}_{\mathrm{I}}<\mathrm{B}_{\mathrm{m}}+1.28 \sigma(90 \% \mathrm{CL}) \\
1.64 \sigma(95 \% \mathrm{CL}) \\
2.33 \sigma(99 \% \mathrm{CL})
\end{array}
$$

Measurement $\mathrm{B}=\mathrm{B}_{\mathrm{m}} \pm \sigma$
Ex) $B_{1}=(3 \pm 5) \times 10^{-9}$
$\mathrm{B}_{1}<(3+1.28 \times 5) \times 10^{-9}$ at $90 \% \mathrm{CL}$
or $\mathrm{B}_{1}<9.4 \times 10^{-9}$ at $90 \% \mathrm{CL}$

Upper Limit B| (cont'd)

- Method 2. Negative B_{m}
- Background Subtracted
- Example)
- $\mathrm{B}_{\mathrm{m}}=(-1 \pm 1) \times 10^{-9}$
- $\mathrm{B}_{\mathrm{m}}=(0 \pm 1) \times 10^{-9}$
- Upper Limit at 90 \% CL Level
- g is Gaussian (Mean is B_{m}, width is σ)
$\frac{\int_{0}^{B_{1}} g d B}{\int_{0}^{\infty} g d B}=0.9$

Compare Upper Limit (90\% CL)

B_{m}	Method 1	Method 2
4	5.3	5.3
3	4.3	4.3
2	3.3	3.3
1	2.3	2.4
0.5	1.8	2.0
0	1.3	1.6
-0.5	0.8	1.4
-1	0.3	1.2
-2	-0.7	0.8
-3	-1.7	0.6
-4	-2.7	0.5

Assume
$\sigma=1$

Ex) CP Asymmetry in Charm

$$
\begin{aligned}
& \eta(D)=\frac{N\left(D^{+} \rightarrow K^{-} K^{+} \pi^{+}\right)}{N\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right.} \quad\left(\square+\rightarrow-k+\pi+K^{+}\right) \\
& \eta(D)=\frac{N\left(D^{0} \rightarrow K^{-} K^{+}\right)}{N\left(D^{0}-K^{-} \pi^{+}\right)}>C . F .
\end{aligned}
$$

- Cabibbo Suppressed mode

$$
A_{C P}=\frac{\eta(D)-\eta(\bar{D})}{\eta(D)+\eta(\bar{D})}
$$

- Cabbibo Favored mode

Fitting

Fitting Methods

1. Moments

- Simple, but inefficiency

2. Maximum likelihood Method

- Can be used only if the theoretical distribution is known.
- More general case

3. Least Square Method

- In case of statistical error

Example) For a given N data of $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, let us fit using a linear equation of $y=a x+b$

1. Moment

- Method is to calculate the average
- Simplicity
- Example
- A linear equation

$$
y_{i}=a x_{i}
$$

- Parameter a is

$$
a=\left(\sum_{i=1}^{n} \frac{y_{i}}{x_{i}}\right) / n
$$

2. Maximum likelihood Method

- The likelihood L

$$
L(\Gamma)=\prod_{i=1}^{n} y_{i}(\Gamma)
$$

- Where Γ is the parameter to find
- y_{i} is the function given variable xi
- To find maximize L
- To maximize $/=\log L$
- Normalization is essential.
- Ex) A linear equation

$$
y_{i}=a x_{i}+b
$$

$$
L(a, b)=\prod_{i=1}^{n} y_{i}(a, b)
$$

Maximum likelihood Method (cont'd)

- Can be used only if the theoretical distribution is known.
- The most powerful one for finding the values of unknown parameters
- No histogram needed (event by event)
- Efficient Method \rightarrow Most case works
- We can transform one variable to another

Ex)

$$
\lambda_{0}=1 / \tau_{0}
$$

3. Least Square Method

- Least Square Method for Simple Case
- The first order of polynomials (linear equation $y=a x+b$)
- For a given N data of (x_{i}, y_{i}), let us fit using a linear equation of $y=a x+b$
- To find a and b which is the minimization of the sum of distance between data and equation. i.e. when we put Q as follows:

$$
Q=\sum\left(a+b x_{i}-y_{i}\right)^{2}
$$

- Let us find a and b which ${ }^{i}$ satisfies the following equations

$$
\frac{\partial Q}{\partial a}=0 \quad \& \quad \frac{\partial Q}{\partial b}=0
$$

3. Least Square Method

- Least Square Method for Simple Case with errors
- The first order of polynomials (linear equation $y=a x+b$)
- For a given N data of (x_{i}, y_{i}, σ_{-}i), let us fit using a linear equation of $y=a x+b$
- To find a and b which is the minimization of the sum of distance between data and equation. i.e. when we put Q as follows:

$$
Q=\sum_{i}\left[\left(a+b x_{i}-y_{i}\right) / \sigma_{i}\right]^{2}
$$

- Let us find a and b which satisfies the following equations

$$
\frac{\partial Q}{\partial a}=0 \quad \& \quad \frac{\partial Q}{\partial b}=0
$$

Least Square Method (Continued)

- Least Square Method for Linear Polynomials
- m of unknown parameters $\left(a_{1}, a_{2}, a_{3}, \ldots a_{m}\right)$
$-F(x)=a_{1} f_{1}(x)+a_{2} f_{2}(x)++a_{m} f_{m}(x)$
- It is same as linear least square method
- There will be m equations and solutions
- Least Square Method for Non-linear Equation
- Let us expansion as a linear polynomial using Taylor series.

Least Square Method (Example)

- Mn_fit used
- Least Square Method
- Signal is gaussian.
- Background is Chebyshev polynomial.

근 사 0 론
 (Least Squares)

근사이론의 형태

근사이론(최소 제곱법)에는 두가지 형태의 문제와 관련이 있다.

첫번째 형태는 주어진 데이터에 함수를 맞추는 것으로서 그 데이터를 표현하는데에 사용될수 있는 어떤 부류의 함수들 중에서 데이터를 표현하는 데에 사용할 수 있는 가장 적절한 함수를 찾는 것과
예) Linear Least Squares 등

두번째 형태는 함수가 명시적으로 주어졌지만 다항식과 같은 단순한 형태의 함수 표현을 찾고자 하 는것

예)

$$
\sin \pi x=-4.12251 x^{2}+4.12251 x-0.50465
$$

절대 편차 이용?

$$
\begin{aligned}
& \text { 1. } y_{i}=a_{1} x_{i}+a_{0} \\
& \text { 오차 : } E\left(a_{0}, a_{1}\right)=\sum_{i=1}^{n}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right| \\
& \text { 1) } \frac{\partial}{\partial a_{0}} \sum_{i=1}^{n}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|=0 \\
& \text { 2) } \frac{\partial}{\partial a_{1}} \sum_{i=1}^{n}\left|y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right|=0 \\
& =>\text { 절대치 함수가 에서 미분 불가능. } \\
& \text { 두방정식의 해를 반드시 구할 수 없음. } \\
& \quad->\text { 최소 제곱법 }
\end{aligned}
$$

선형 최소 제곱법

오차 : $\quad E\left(a_{0}, a_{1}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right]^{2}$

1) $\frac{\partial}{\partial a_{0}} \sum_{i=1}^{n}\left[y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right]^{2}=2 \sum_{i=1}^{n}\left(y_{i}-a_{1} x_{i}-a_{0}\right)(-1)=0$
2)

$$
\frac{\partial}{\partial a_{1}} \sum_{i=1}^{n}\left[y_{i}-\left(a_{1} x_{i}+a_{0}\right)\right]^{2}=2 \sum_{i=1}^{n}\left(y_{i}-a_{1} x_{i}-a_{0}\right)\left(-x_{i}\right)=0
$$

정규 방정식(normal equation)
1)
2)

$$
\begin{aligned}
& a_{0} \sum_{i=1}^{n} x_{i}+a_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \\
& a_{0} n+a_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

$$
\begin{aligned}
& y=a_{1} X-a_{0} \\
& a_{0}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right)-\left(\sum_{i=1}^{n} x_{i} y_{i}\right)\left(\sum_{i=1}^{n} x_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\
& a_{1}=\frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
\end{aligned}
$$

: Linear Least Squares

예 제 1

x_{i}	y_{i}	x_{i}	y_{i}
1	1.3	6	8.8
2	3.5	7	10.1
3	4.2	8	12.5
4	5.0	9	13.0
5	7.0	10	15.6

$$
\begin{aligned}
& a_{0}=\frac{(385)(81)-(55)(572.4)}{10(385)-(55)^{2}}=-0.360 \\
& a_{1}=\frac{10(572.4)-(55)(81)}{10(385)-(55)^{2}}=1.538
\end{aligned}
$$

$$
y=1.538 x-0.360
$$

그림 - 예제 1

$$
y_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}
$$

최소 제곱법을 이용하여 n 차 대수 다항식을 구할수 있음.

최소 제곱 오차의 합을 최소

$$
\left.\frac{\partial}{\partial a_{j}} \sum_{i=1}^{m}\left[y_{i}-y_{n}\left(x_{i}\right)\right]^{2} \stackrel{(\mathrm{j}}{=}=0,1,2,3, \ldots, \mathrm{n}\right)
$$

정규 방정식: $(n+1)$ 개의 미지수 를 갖는 $(n+1)$ 개의 정규방정식

$$
\begin{aligned}
& a_{0} \sum_{i=1}^{m} x_{i}^{0}+a_{1} \sum_{i=1}^{m} x_{i}^{1}+a_{2} \sum_{i=1}^{m} x_{i}^{2}+\cdots+a_{n} \sum_{i=1}^{m} x_{i}^{n}=\sum_{i=1}^{m} y_{i} x_{i}^{0} \\
& a_{0} \sum_{i=1}^{m} x_{i}^{1}+a_{1} \sum_{i=1}^{m} x_{i}^{2}+a_{2} \sum_{i=1}^{m} x_{i}^{3}+\cdots+a_{n} \sum_{i=1}^{m} x_{i}^{n+1}=\sum_{i=1}^{m} y_{i} x_{i}^{1} \\
& a_{0} \sum_{i=1}^{m} x_{i}^{n}+a_{1} \sum_{i=1}^{m} x_{i}^{n+1}+a_{2} \sum_{i=1}^{m} x_{i}^{n+2}+\cdots+a_{n} \sum_{i=1}^{m} x_{i}^{2 n}=\sum_{i=1}^{m} y_{i} x_{i}^{n}
\end{aligned}
$$

예 제 2

I	1	2	3	4	5
X_{i}	0	0.25	0.50	0.75	1.00
Y_{i}	1.0000	1.2840	1.6787	2.1170	2.7183
$y\left(x_{i}\right)$	1.0051	1.2740	1.6482	2.1279	2.7130
$Y_{i}-y(x)$	-0.0051	0.0100	0.0005	-0.0109	0.0053

$$
\begin{array}{r}
5 a_{0}+2.5 a_{1}+1.875 a_{2}=8.7680 \\
2.5 a_{0}+1.875 a_{1}+1.5625 a_{2}=5.4514 \\
1.875 a_{0}+1.5625 a_{1}+1.3828 a_{2}=4.4015
\end{array}
$$

$$
y_{2}(x)=0.84316 x^{2}+0.86468 x+1.0051
$$

그림 - 예제 2

연속 최소 제곱법

$$
f \in C\left[a, b^{\text {g\| }} \text { | }-1\right.
$$

오차 : $\quad E\left(a_{0}, a_{1}, \ldots, a_{n}\right)=\int_{a}^{b}\left(f(x)-P_{n}(x)\right)^{2} d x=\int_{a}^{b}\left(f(x)-\sum_{k=0}^{n} a_{k} x^{k}\right)^{2} d x$

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=\sum_{k=0}^{n} a_{k} x^{k}
$$

오차의 최소화
$\underset{\text { 정규방정식 }}{ } \frac{\partial E}{\partial a_{j}}=-2 \int_{a}^{b} x^{j} f(x) d x+2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x=0$

$$
\sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x=\int_{a}^{b} x^{j} f(x) d x, \quad(\mathrm{j}=0,1,2, \cdots, \mathrm{n})
$$

예 제 3

구간 [0.1] 상의 함수 $\sin (\pi x)$ 에 대한 2 차 최소 자승 근사 다항식

$$
P_{2}(x)=a_{2} x^{2}+a_{1} x+a_{0} \text { 에 대한 정규 방정식은 }
$$

$$
a_{0} \int_{0}^{1} 1 d x+a_{1} \int_{0}^{1} x d x+a_{2} \int_{0}^{1} x^{2} d x=\int_{0}^{1} \sin (\pi x) d x \Rightarrow a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}=\frac{2}{\pi}
$$

$$
a_{0} \int_{0}^{1} x d x+a_{1} \int_{0}^{1} x^{2} d x+a_{2} \int_{0}^{1} x^{3} d x=\int_{0}^{1} x \sin (\pi x) d x \Rightarrow \frac{1}{2} a_{0}+\frac{1}{3} a_{1}+\frac{1}{4} a_{2}=\frac{1}{\pi}
$$

$$
a_{0} \int_{0}^{1} x^{2} d x+a_{1} \int_{0}^{1} x^{3} d x+a_{2} \int_{0}^{1} x^{4} d x=\int_{0}^{1} x^{2} \sin (\pi x) d x \Rightarrow \frac{1}{3} a_{0}+\frac{1}{4} a_{1}+\frac{1}{5} a_{2}=\frac{\pi^{2}-4}{\pi^{3}}
$$

따라서 $a_{0}=\frac{12 \pi^{2}-120}{\pi^{3}} \approx-0.050465 \quad a_{1}=-a_{2}=\frac{720-60 \pi^{2}}{\pi^{3}} \approx 4.12251$

$$
f(x)=\sin \pi x \approx P_{2}(x)=-4.12251 x^{2}+4.12251 x-0.050465
$$

그림 - 예제 3

4. Maximum Likelihood vs. Least Square Method

	Maximum like.	Least Square
How easy	Normalization and maximization can be messy	Needs minimization
Efficiency	Usually most efficient	Sometime equivalent to max. like.
Input data	Individual events	Histograms
Estimate of goodness of fit	Very difficult	Easy
Zero event	Cover well	Troublesome

Maximum Likelihood = Least Square Method

- X-Y plane
- Errors in y-direction are Gaussian
- X-values are precisely determined
\Rightarrow The maximum likelihood and the least square methods are equivalent.
Example) Mass distributions

Fitting Package

- PAW
- Mn_fit
- Root
-

PAW

- Physics Analysis Workstation
- Inside of CERN library
- Ntuple - n dimensional variables
- Good to make histogram
- Include some fitting

Mn_fit

- Using fitting program in minuit at CERN library
- Powerful for fitting
- Easily check the results whether the fitting results are good or not.

mn_fit (example)

- Signal is Gaussian
- Maximum likelihood is same as least square method

ROOT

- To Handle large data
- An object oriented HEP analysis Framework
- ROOT was created by Rene Brun and Fons Rademakers in CERN
- The ROOT system website is at http://root.cern.ch/

Differences from PAW

- Regular grammar (C++) on command line
- Single language (compiled and interpreted)
- Object Oriented (use your class in the interpreter)
- Advanced Interactive User Interface
- Well Documented code. HTML class descriptions for every class.
- Object I/O including Schema Evolution
- 3-d interfaces with OpenGL and X3D.

ROOT example

$N_{B}=14 \pm 6$ events

Conclusions

- Data Processing is important for physicists
- Ref.
- Louis Lyons, Statistics for nuclear and particle physicists (Cambridge Press)

