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High Energy Physics

High Energy Physics
The ultimate structure of matter  and the 
understanding of the origin of universeGoal

Supersymmetry

Unsolved Problems

SUSY Particles Unification of
Interactions

Supe sy et y

Direction

Symmetry and Conservation Laws
 

Charge Conjugation-Parity Violation

Standard Model
(quark - lepton,

Interactions)

Interactions

Unsolved Problems

Unsolved Problems

Higgs particle(s)
Quark Mixing

etc.

Charge Conjugation Parity Violation 

Existence of New Interactions 

Extended Models
Composite Models

Unsolved Problems

Antimatter in Space
Dark Matter

Unsolved Problems
 

Leptoquarks 
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Wh t i W ld M d f?Wh t i W ld M d f?What is World Made of?What is World Made of?

– Atom (100 pm)

• Electron

• Nucleus

– Proton neutronProton, neutron

• quarks

(1 fm) 

(1 am)

6



How to know any of this?How to know any of this?yy
(Testing Theory)(Testing Theory)

 Example Example

– Light bulb (Source)

– Tennis ball (target)

– Eye (detector)
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How to detect?How to detect?How to detect?How to detect?
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How do we experiment with How do we experiment with pp
tiny particles? (Accelerators)tiny particles? (Accelerators)

 Accelerators solve two problems:

– High energy gives small wavelength to detect 
ll i lsmall particles.

– The high energy create the massive particles that 
the physicist want to study.
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HighHigh Energy Physics TeamEnergy Physics Team
To probe the Standard Model and search for New 

Physics 

HighHigh Energy Physics TeamEnergy Physics Team

Theory

e-
Science

Comput-Experi- Comput
ing

Experi-
ment

CDFCDF
Belle/Belle II

cf  LHCbcf. LHCb

K.Cho and H.W.Kim, JKPS (2009)



CDF*@FNAL, USA
국제 공동연구

IN2P3@France

RHIC@BNL USA

한•불 입자물리연구소

LHC@CERN,Europe

RHIC@BNL, USA

Belle*/Belle II* 
@ KEK J

e-Science @KISTI
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@ KEK, Japan *Collaboration

• 한불입자물리연구소 CDF 그룹 한국 파트너 (조기현)
• Belle II Data Handling 워킹그룹장 (조기현)



Energy frontier experiments   Energy frontier experiments   
LHC, ILC, …LHC, ILC, …

LHCLHC

New particlesNew particles
d i t tid i t ti

Higgs, SUSY, Dark matter, Higgs, SUSY, Dark matter, 
New understanding of spaceNew understanding of space--time…time…

KEKB upgradeKEKB upgrade

Th hTh h

and new interactionsand new interactions

ILCILC
Three approachesThree approaches

toto
New PhysicsNew Physics

 exp., exp.,  LFV, LFV,  LFV,LFV,
gg --22 LeptonLepton

physicsphysics

gg 2, 2, ……
Quark flavorQuark flavor

physicsphysics

Neutrino mixing/masses, Neutrino mixing/masses, 
Lepton number nonLepton number non--

SuperSuper--BB Factory,  Factory,  
KK exp., exp., etcetc..

conservation… conservation… 

JJ--PARCPARC

CP asymmetry, Baryogenesis,CP asymmetry, Baryogenesis,
LeftLeft--right symmetry, New sourcesright symmetry, New sources

of flavor mixing…of flavor mixing…M. Yamakuchi, Belle II meeting (2008)



Heavy Flavor Physics ExperimentsHeavy Flavor Physics Experiments
Belle/Belle II CDF LHCb

Y 1998 2010 (B ll ) 2001 2009Year 1998-2010 (Belle)
2014 – (Belle II)

2001- 2009-

Place KEK, Japan Fermilab, USA CERN, Europe

Collaboratio
n

13/47/~300(Belle II)
(Nat./Ins./member)

15/63/620 15/54/730

σ 1 nb 150 μb 300~500 μbσ 1 nb
(10GeV)

150 μb 
(2TeV)

300~500 μb
(7~14TeV)

Current
L i it

1 ab-1 8 fb-1 180nb-1

Luminosity
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Data ProcessingData Processing



Why do we do experiments?Why do we do experiments?Why do we do experiments?Why do we do experiments?

 Parameter determination
– To set the numerical values of some physical quantitiesTo set the numerical values of some physical quantities

– Ex) To measure velocity of light

 Hypothesis testing
– To test whether a particular theory is consistent with our 

data

– Ex) To check whether velocity of light has suddenly 
increased by several percent since beginning of this yearincreased by several percent since beginning of this year
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Type of DataType of DataType of DataType of Data

 Real Data (on-site)
– Raw Data : Detector Information– Raw Data : Detector Information

– Reconstructed Data : Physics Information

– Stream (Skim) Data : Selected interested physicsStream (Skim) Data : Selected interested physics  

 Simulated Data (on-site or off-site) Simulated Data (on site or off site)
– Physics generation : pythia, QQ, bgenerator, 

CompHEP, …
– Detector Simulation : Fastsim, GEANT, …
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Typical Research ProcedureTypical Research ProcedureTypical Research ProcedureTypical Research Procedure

Off-sites  (KISTI + other institutions)

HEP
Knowledge

Reaction
Simulation

= Event
Generation

Detector
Simulation

Simulated 
Data

Data
Analysis

Generation
Data

Reduction

Real
Data

On-sites (Experimental sites)

Accelerator (LHC) Detector 
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Error (Error ())Error (Error ())

 Error
– Error : the difference between measurement and true value

l– True value 
• We don’t know it

– Statistical error 
• Error due to statistical fluctuation

– Systematic error
• More in nature of mistakes due to equipments andMore in nature of mistakes due to equipments and 

experimentalists

 Experimental value : Meas  stat error  sys error Experimental value : Meas.  stat. error  sys. error
Example )  m(top) = 175.9  4.8  5.3 GeV/c2  (CDF, 1998)
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Why estimate errors?Why estimate errors?Why estimate errors?Why estimate errors?
 To know how accuracy of the measurement To know how accuracy of the measurement

 Example
– The conventional speed of light  c=2.998 X 108 m/sec 

– When the new measurement       c=3.09  X 108 m/sec

– Case 1. If the error is  0.15, then it is consistent. 
• Conventional physics is in good shape• Conventional physics is in good shape. 

• 3.09  0.15 is consistent with 2.998 X 108 m/sec 

– Case 2 . If the error is  0.01, then it is not consistent.
3 09  0 01 i ld h tt i di• 3.09  0.01 is world shattering discovery.

– Case 3. If the error is 2, then it is consistent.
• However, the accuracy of 3.09 2 is too low. 

• Useless measurement

Whenever you determine a parameter, estimate the 
error or your experiment is useless

19
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Examples) Bad and Good

•L (Integrated Lum.)  :  5169.26 nb-1 +/- 0.02

•Nsig : 4403

•A (Total acceptance for W->enu)  :  0.22212

•Cross section * BR = Nsig / (A * L) = 4403 / (0 22212*5169 26)Cross section  BR  Nsig /  (A  L)    4403 / (0.22212 5169.26)

=  3.83471 nb

Cdf 6681
Data (blue color)

MC : w->enu, z->ee (black)

Cdfnote 6681,

Bad Good
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How to reduce errors?How to reduce errors?How to reduce errors?How to reduce errors?

 Statistical error
– Repeated measurementRepeated measurement

– N : the expected number of observation

–  = Sqrt(N) : the spread

 Systematic error
– No exact formulae

– Ideal case : All such effects should be absent.

Real world : An attempt to be made to reduce it– Real world : An attempt to be made to reduce it.

21



How to solve systematic errors?How to solve systematic errors?How to solve systematic errors?How to solve systematic errors?

 Use constraint condition
– Ex) TriangleEx) Triangle

 Calibrations

 Energy and momentum conservation Energy and momentum conservation
– E(after) – E(before) = 0

– |P(after)| - |P(before)| = 0

How small of the systematic error?
– Systematic errors should be around statistical errors

22



The meaning ofThe meaning of  (error)(error)The meaning of The meaning of  (error)(error)

 Distributions x -> n(x)
– Discrete 

• ex) # of times n(x) you met a girl at age x• ex) # of times n(x) you met a girl at age x

– Continuous :
• ex) Hours sleep each night (x), # of people sleeping for time.

 For an even larger number of observation and with small 
bin size, the histogram approach a continuous distribution.

 Mean  and Variance

 Gaussian distribution 
– In case of larger number of observation

It is important for error calculations

23

– It is important for error calculations



Tracking PerformanceTracking Performance

Hit Resolution
~200 m

Goal : 180 mCOT tracks
Residual distance (cm) 

Ks  s

 p
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Mean and VarianceMean and VarianceMean and VarianceMean and Variance

True Value MeasurementTrue Value Measurement
Mean

 x
Variance

2 s2

Standard deviation  s

In fact, we don’t know the true value in the real world.
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MeanMeanMeanMean

 Mean
– N events has the value of (x1, x2, x3,… xN) 

N
x

x i
 Median – Observation or potential observation in a 

set that divides the set so that the same number of 
l it i th iddl l f b it

N

values, it is the middle value; for an even number it 
is the average of the middle tow

 Mode – Observation that occurs with the greatest Mode Observation that occurs with the greatest 
frequency

26
– When do not know true value 



VarianceVarianceVarianceVariance

 Variance Variance
– When know true value

N
x

s i
2

2 )( 




– When do not know true value 

1
)( 2

2




 
N

xx
s i
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Accuracy (Accuracy (Accuracy (Accuracy (

 In order to know the accuracy of the 
measurementmeasurement

N
s


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Gaussian DistributionGaussian DistributionGaussian DistributionGaussian Distribution

• In case of large size of data 
• Gaussian distribution is the fundamental in error treatment.
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Gaussian Distribution (contGaussian Distribution (cont’’d)d)Gaussian Distribution (contGaussian Distribution (cont d)d)

 The normalized function

1 }2/)(exp{
2
1 22 


 xy

 Mean ()

 Width ()

 Width () is smaller, distribution is narrower.

 Properties 

68.0)( 






dxxf
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Gaussian Distribution (contGaussian Distribution (cont’’d)d)Gaussian Distribution (contGaussian Distribution (cont d)d)

• Mean () is same as zero.

• However width ( ) is different

31

However width ( ) is different.



Examples (Gaussian + BG)Examples (Gaussian + BG)Examples (Gaussian + BG) Examples (Gaussian + BG) 

D J K (2004 3 4)

32

D.J.Kong (2004.3.4)



CDF Secondary CDF Secondary yy
Vertex TriggerVertex Trigger

NEW for Run 2  -- level 2 impact parameter trigger  

Provides access to hadronic B decays

Data from commissioning run

COT defines track       SVX measures             (no alignment or calibrations)

at level 1            impact parameter

 ~ 87 
m

33
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Gaussian fitting

Using Mn_fit



68.0)(/)( 








dxxfdxxf




-  +
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Significant FigureSignificant FigureSignificant FigureSignificant Figure

 The measured value has meaning by significant 
figuresfigures

 Significant Figure
– It includes the first figure of uncertaintyIt includes the first figure of uncertainty 

– All the figures between LSD (least significant digit) and 
MSD(Most significant digit)

LSD• LSD

– If there is no point : The far right non-zero figure ex)23000

– If there is point : The far right figure  ex) 0.2300

• MSD : The far left non-zero figure
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Significant Figure (Example)Significant Figure (Example)Significant Figure (Example)Significant Figure (Example)

• 4 digit : 1234, 123400, 123.4, 1000. 

• 4 digit : 10.10,  0.0001010,   100.0, 1.010X103

• 3 digit : 1010      cf) 1010. (Four digit of significant figure)
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The calculationThe calculationThe calculationThe calculation

 Add and Subtract
Th l t lt i d id d b th i i i t– The last result is decided by the minimum point 
of calculations

Example)– Example)
123

+ 5.35

1.0001 ( 5 digit of SF)   

+ 0 0003 (1 digit of SF)       5.35

--------

128.35

+    0.0003 (1 digit of SF)

--------

1 0004 (5 digit of SF)1.0004 (5 digit of SF)
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Calculations (contCalculations (cont’’d)d)Calculations (contCalculations (cont d)d)

Multiply and Divide
S th i i di it f i ifi t fi– Same as the minimum digit of significant figure 

– Example)
16 3 X 4 5 73 3516.3 X 4.5 = 73.35

=> 73
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Propagation of ErrorsPropagation of Errors

 Suppose that (x1,x2, …) is the variables, then  
variation of the function of F(x1 x2 ) is as follows:variation of the function of F(x1, x2, …) is as follows:

– In case that there is no correlation between variables

...)()()( 2
3

22
2

22
1

22  FFF
F








 ...)()()( 3

3
2

2
1

1


xxxF 






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Propagation of Errors Propagation of Errors 
(continued)(continued)

 Suppose that (x1,x2, …) is the variables, then  
variation of the function of F(x1 x2 ) is as follows:variation of the function of F(x1, x2, …) is as follows:

- In case that there is correlation between variables

ji
jiji

F x
F

x
F  )()(2








jiji xx, 

 Let us consider only non-correlation case.
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Combining ErrorsCombining ErrorsCombining ErrorsCombining Errors

 Add or Subtract (F=x1+x2 or F= x1-x2)

2
2

2
1  F

Example)   x1 = 100.  10.

+ x2 = 400.  20.

-----------

F = 500  22F  = 500.   22.

Example)  The error of the measurement
22  

41
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Combining Errors (contCombining Errors (cont’’d)d)Combining Errors (contCombining Errors (cont d)d)

 F=ax (a is constant)

 aF 

Example) x =100  10Example)  x =100.  10.

a = 5

------------

F = 500.  50.
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Combining Errors (contCombining Errors (cont’’d)d)Combining Errors (contCombining Errors (cont d)d)

Multiplication (F=x1 • x2)

2
22

2
1121 )/()/( xxxxF  

Example) x1 = 100.  10.1

x2 = 400.  20.
-----------

F  =    (400.   45. ) X 102
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Combining Errors (contCombining Errors (cont’’d)d)Combining Errors (contCombining Errors (cont d)d)

Division (F= x1 / x2)

2
22

2
1121 )/()/()/( xxxxF  

Example) x1 = 100.  10.1

x2 = 400.  20.
-----------

F  = 0.250  0.028
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Combining results Combining results 
U i i hti f tU i i hti f tUsing weighting factorUsing weighting factor

 Cases
– With different detection efficiencies (RunI, RunII)With different detection efficiencies (RunI, RunII)

– With different parts of apparatus (SVX, COT)

– With different experiment (CDF, D0)

With diff t d h i– With different decay mechanisms

ex) Bs->Psi(2s) Phi

1) Psi(2s) ->J/Psi mu+ mu-

2) Psi(2s) -> mu+mu-

ex) D0-> KsKs

1) D*+ > D0 pi+1) D*+ -> D0 pi+

2) D*0 -> D0 pi0
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Combining results Combining results 
U i i hti f t ( tU i i hti f t ( t’’d)d)Using weighting factor (contUsing weighting factor (cont’’d)d)

 Average
– There is N data whose values are (x1 x2 xk xN)There is N data whose values are (x1, x2,. ..xk,… xN)

– Suppose that the error of Xk is k

 kk xw




k
k

kk

w
xw

x

where weighting factor
2/1 kkw 

 Error :  kw/12
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Ex) World Average of sin(2Ex) World Average of sin(2))Ex) World Average of sin(2Ex) World Average of sin(2)  )  
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Ex) BEx) B00 lifetime summarylifetime summaryEx) BEx) B00 lifetime summarylifetime summary
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Ex) CDF BEx) CDF B MixingMixingEx) CDF BEx) CDF Bdd MixingMixing

49



Upper LimitUpper LimitUpper LimitUpper Limit

 Measurement (B = Bm   )

 Observation (Bm> 5)  

– Signal is greater than 5 sigma of error.Signal is greater than 5 sigma of error.

 Evidence ( 3 < Bm < 5 )

– Signal is greater than 3 sigma of error, however less than 5 
sigma.  

 Upper Limit  (3 > Bm )
– Signal is less than 3 sigma.
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Upper Limit BUpper Limit B (cont(cont’’d)d)Upper Limit BUpper Limit Bll (cont(cont d)d)

 Method I. General Case

Measurement B = Bm  
Bl < Bm + 1.28 (90% CL)l m

1.64 (95% CL)

2.33 (99% CL) 

Measurement B = Bm  

Ex) Bl =(3  5) X 10-9Ex) Bl (3  5) X 10
Bl <  (3+1.28X5) X 10-9 at 90% CL 

or  Bl <   9.4  X 10-9 at 90% CL 
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Upper Limit BUpper Limit B (cont(cont’’d)d)Upper Limit BUpper Limit Bll (cont(cont d)d)

Method 2. Negative Bm

B k d S bt t d– Background Subtracted

– Example)
B ( 1  1) X 10-9• Bm = (-1  1) X 10-9

• Bm = (  0  1) X 10-9

– Upper Limit at 90 % CL LevelUpper Limit at 90 % CL Level 
• g is Gaussian (Mean is Bm , width is  )

 gdB
lB

9.0

0

0 






gdB

gdB
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Compare Upper Limit (90% CL)Compare Upper Limit (90% CL)Compare Upper Limit (90% CL) Compare Upper Limit (90% CL) 

Bm Method 1 Method 2
4 5.3 5.3
3 4 3 4 33 4.3 4.3
2 3.3 3.3
1 2 3 2 4 Assume1 2.3 2.4

0.5 1.8 2.0
0 1.3 1.6

Assume 
=1

-0.5 0.8 1.4
-1 0.3 1.2
2 0 7 0 8-2 -0.7 0.8

-3 -1.7 0.6
-4 -2.7 0.5

53
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Ex) CP Asymmetry in CharmEx) CP Asymmetry in Charm
(D(D++ KK KK++ ))



(D(D++  KK--KK++)))(
)()( 










KDN
KKDND

)()(
0 

 KKDND C F

 Cabibbo Suppressed mode ( ) ( )
( ) ( )C P

D DA
D D

 
 






)(
)( 0 





KDN
D C.F.

D+  KK++

D  KK+
A=0.0060.011  0.005

A < 0 025 t 95 %CL

 Cabbibo Favored mode

A < 0.025 at 95 %CL

D+  K  ++

D  K+ 
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Fitting Fitting 



Fitting MethodsFitting MethodsFitting Methods Fitting Methods 

1. Moments
• Simple, but inefficiencySimple, but inefficiency

2. Maximum likelihood Method
• Can be used only if the theoretical distribution is known.

• More general case

3. Least Square Method
• In case of statistical error

Example) For a given N data of (xi, yi), let us fit using a linear 
equation of y ax+b

56

equation of  y=ax+b



1 Moment1 Moment1. Moment1. Moment

Method is to calculate the average

Si li i Simplicity

 Example
– A linear equation 

ii axy 

• Parameter a is

iiy

n
x
ya

i

i
n

i
/)(

1




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2 Maximum likelihood Method2 Maximum likelihood Method2. Maximum likelihood Method2. Maximum likelihood Method

 The likelihood L The likelihood L 

 
n

iyL )()(

 Where  is the parameter to find





i

iyL
1

)()(

 yi  is the function given variable xi

 To find maximize L
T i i l l L To maximize l= log L

 Normalization is essential.

 Ex) A linear equation Ex)  A linear equation

baxy ii  



n

i
i baybaL

1

),(),(
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Maximum likelihood Method Maximum likelihood Method 
(( ))(cont(cont’’d)d)

 Can be used only if the theoretical distribution is known.

 Th t f l f fi di th l f k The most powerful one for finding the values of unknown 
parameters

 No  histogram needed (event by event)

 Efficient Method → Most case works Efficient Method → Most case works

 We can transform one variable to another
)Ex)   

00 /1  
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3 Least Square Method3 Least Square Method3. Least Square Method3. Least Square Method

 Least Square Method for Simple Case Least Square Method for Simple Case
– The first order of polynomials (linear equation y=ax+b)

– For a given N data of (xi, yi), let us fit using a linear equation of  
y=ax+b

– To find a and b which is the minimization of the sum of distance 
between data and equation . i.e. when we put Q as follows:

– Let us find a and b which satisfies the following equations

 
i

ii ybxaQ 2)(
Let us find a and b which satisfies the following equations

0&0 



 QQ 0  &  0 




 ba
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3 Least Square Method3 Least Square Method3. Least Square Method3. Least Square Method

 Least Square Method for Simple Case with errors Least Square Method for Simple Case with errors
– The first order of polynomials (linear equation y=ax+b)

– For a given N data of (xi, yi, _i), let us fit using a linear equation of  
y=ax+b

– To find a and b which is the minimization of the sum of distance 
between data and equation . i.e. when we put Q as follows:

– Let us find a and b which satisfies the following equations

 
i

iii ybxaQ 2]/)[( 
Let us find a and b which satisfies the following equations

0&0 



 QQ 0  &  0 




 ba
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Least Square Method Least Square Method 
( )( )(Continued)(Continued)

 Least Square Method for Linear Polynomials 
– m of unknown parameters (a1 a2 a3 a )m of unknown parameters (a1, a2, a3,… am)

– F(x)=a1f1(x)+a2f2(x)+  + am fm(x)

– It is same as linear least square method

– There will be m equations and solutions

 Least Square Method for Non-linear Equation
– Let us expansion as a linear polynomial using Taylor series. 
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Least Square Method (Example)Least Square Method (Example)Least Square Method (Example)Least Square Method (Example)

 Mn_fit used

 Least Square Method Least Square Method

 Signal is gaussian Signal is gaussian.

 Background is 
Chebyshev polynomialChebyshev polynomial.
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근사이론의근사이론의 형태형태근사이론의근사이론의 형태형태

근사이론(최소 제곱법)에는 두가지 형태의 문제와 관련이 있다.

첫번째 형태는 주어진 데이터에 함수를 맞추는 것으로서 그 데이터를 표현하는데에 사용될수 있는첫번째 형태는 주어진 데이터에 함수를 맞추는 것으로서 그 데이터를 표현하는데에 사용될수 있는
어떤 부류의 함수들 중에서 데이터를 표현하는 데에 사용할 수 있는 가장 적절한 함수를 찾는
것과

예)   Linear Least Squares 등

두번째 형태는 함수가 명시적으로 주어졌지만 다항식과 같은 단순한 형태의 함수 표현을 찾고자 하
는것

예)

50465.012251.412251.4sin 2  xxx
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절대절대 편차편차 이용이용 ??

1 1.

오차 : 
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=> 절대치 함수가 0에서 미분 불가능.

두방정식의 해를 반드시 구할 수 없음.두방정식의 해를 시 구할 수

-> 최소 제곱법
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선형선형 최소최소 제곱법제곱법선형선형 최소최소 제곱법제곱법
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: Linear Least Squares
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예예 제제 11예예 제제 11

x y x yxi yi xi yi

1 1.3 6 8.8

2 3.5 7 10.1

3 4 2 8 12 53 4.2 8 12.5

4 5.0 9 13.0

5 7.0 10 15.6

360.0
)55()385(10

)4.572)(55()81)(385(
20 




a

538.1
)55()385(10

)81)(55()4.572(10
21 




a

360.0538.1  xy
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그림 - 예제 1
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최소 제곱법을 이용하여 n차 대수 다항식을 구할수 있음.

최소 제곱 오차의 합을 최소최소 제곱 오차의 합을 최소
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예예 제제 22예예 제제 22

I 1 2 3 4 5

Xi 0 0.25 0.50 0.75 1.00

Yi 1.0000 1.2840 1.6787 2.1170 2.7183

y(xi) 1.0051 1.2740 1.6482 2.1279 2.7130

Yi-y(x) -0.0051 0.0100 0.0005 -0.0109 0.0053

768088751525  aaa

4015438281562518751
4514.55625.1  875.1   5.2   
7680.8  875.1  5.2      5     

210

210





aaa
aaa

aaa

4015.43828.1 5625.1875.1 210  aaa

00511864680843160 2
2 .x.x.(x)y 
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그림 - 예제 2
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연속연속 최소최소 제곱법제곱법연속연속 최소최소 제곱법제곱법
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예예 제제 33예예 제제 33

구간 [0 1] 상의 함수 에 대한 2차 최소 자승 근사 다항식)sin( x구간 [0.1] 상의 함수 에 대한 2차 최소 자승 근사 다항식

에 대한 정규 방정식은
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그림 - 예제 3
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4. Maximum Likelihood vs.4. Maximum Likelihood vs.
Least Square MethodLeast Square Method

M i lik L t SMaximum like. Least Square

How easy Normalization and   Needs minimization
maximization can be 

messy

Effi i U ll t ffi i t S ti i l tEfficiency Usually most efficient Sometime equivalent 
to max. like.

Input data Individual events Histograms

Estimate of Very difficult EasyEstimate of 
goodness of fit

Very difficult Easy

Zero event Cover well Troublesome
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Maximum Likelihood =Maximum Likelihood =
Least Square MethodLeast Square Method

 X-Y plane

i di i G i Errors in y-direction are Gaussian

 X-values are precisely determined

The maximum likelihood and the leastThe maximum likelihood and the least 
square methods are equivalent.

Example) Mass distributionsExample) Mass distributions
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Fitting PackageFitting PackageFitting PackageFitting Package

 PAW

Mn_fit

 Root Root

……
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PAWPAWPAW PAW 

 Physics Analysis Workstation

I id f C N lib Inside of CERN library

 Ntuple – n dimensional variables 

Good to make histogram

 Include some fitting Include some fitting
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Mn fitMn fitMn_fitMn_fit

 Using fitting program in minuit at CERN 
librarylibrary

 Powerful for fitting 

 Easily check the results whether the fitting 
results are good or not.
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mn fit (example)mn fit (example)mn_fit (example)mn_fit (example)

 Signal is Gaussian

 Maximum likelihood is 
same as least squaresame as least square 
method
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ROOTROOTROOT ROOT 

 To Handle large data

 An object oriented HEP analysis Framework

 ROOT was created by Rene Brun and Fons 
Rademakers in CERN

 The ROOT system website is at http://root.cern.ch/
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Differences from PAWDifferences from PAWDifferences from PAW Differences from PAW 

 Regular grammar (C++) on command line

 Single language (compiled and interpreted)

 Object Oriented (use your class in the interpreter)

 Ad d I t ti U I t f Advanced Interactive User Interface

 Well Documented code. HTML class descriptions for every 
class.

 Object I/O including Schema Evolution

 3-d interfaces with OpenGL and X3D.

86



ROOT exampleROOT exampleROOT exampleROOT example
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Conclusions

 Data Processing is important for physicists

 Ref.
– Louis Lyons Statistics for nuclear and particleLouis Lyons, Statistics for nuclear and particle 
physicists (Cambridge Press) 
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