High Energy Physics

Symmetry in Physics

Kihyeon Cho

Syllabus

- Introduction (Chap. 1)
- Special Relativity (Chap. 2)
- Special Relativity
- Symmetry (Group)
- Quantum Mechanics (Chap. 3)
- Detector
- Data Processing
- Feynman diagram (Chap. 4)
- QED (Chap. 5)
- QCD (Chap. 6)
- Weak interaction (Chap. 7)
- Simultaneity in Special Relativity
- Four-Vectors and Relativistic Collisions
- Symmetry Properties of Special Relativity
- Poincare Group

주요 사항의 관계를 한눈에 알 수 있다

마지막으로 특집 기사에 등장하는 중요한 키워드를 정리한다. 왼쪽 페이지엣는 키워드끼리의 관계성을 도해하고 오른쪽 페이지에서 키워드를 해설했다.

Line Symmetry

- Shape has line symmetry when one half of it is the mirror image of the other half.

- Symmetry exists all a round us and many people see it as being a thing of beauty.

Is a butterfly symmetrical?

Line Symmetry exists in nature but you may not have noticed.

At the beach there are a variety of shells with line symmetry.

Under the sea there are also many symmetrical objects such as these crabs

and this starish.

Anmas that nave line Symmetry

Human Symmetry

The 'Proportions of Man' is a famous work of art by
Leonardo da Vinci that shows the symmetry of the human form.

REFECTON IN WATER

If an object is reflected in water it is considered to have line symmetry a long the waterline.

he 1ajMan

Symmetry exists in a rchitecture all a round the world. The best known example of this is the Taj Mahal.

2D Shapes a nd Symmetry

After investigating the following shapes by cutting and folding, we found:

Symmetry	Conservation
Translation in time	Energy
Translation in space	Momentum
Rotation	Angular momentum
Gauge transformation	Charge

Noether's Theorem: Symmetries <-> Conservation

Symmetry in Physics

- Symmetry is the most crucial
 concepts in Physics.
- Symmetry principles dictate the basic laws of Physics, and define the fundamental forces of Nature.
- Symmetries are closely linked to the particular dynamics of the system:
- E.g., strong and EM interactions conserve C, P, and T . But, weak interactions violate all of them.
- Different kinds of symmetries:
- Continuous or Discrete
- Global or Local

- Dynamical
- Internal

We focus on this

Examples of Symmetry Operations

Translation in Space
Translation in Time Rotation in Space
Lorentz Transformation Reflection of Space (P) Charge Conjugation (C) Reversal of Time (7)
Interchange of Identical Particles
Change of Q.M. Phase Gauge Transformations

Conserved Quantities and Symmetries

Every conservation law corresponds to an invariance of the Hamiltonian (or Lagrangian) of the system under some transformation.

We call these invariances symmetries.

There are 2 types of transformations: continuous and discontinuous
Continuous \rightarrow give additive conservation laws

$$
\mathrm{x} \rightarrow \mathrm{x}+\mathrm{dx} \text { or } \theta \rightarrow \theta+\mathrm{d} \theta
$$

examples of conserved quantities:
electric charge
momentum
baryon \#
Discontinuous \rightarrow give multiplicative conservation laws
parity transformation: $\mathrm{x}, \mathrm{y}, \mathrm{z} \rightarrow(-\mathrm{x}),(-\mathrm{y}),(-\mathrm{z})$
charge conjugation (particle \leftrightarrow antiparticle): $\mathrm{e}^{-} \rightarrow \mathrm{e}^{+}$
examples of conserved quantities:
parity (in strong and EM)
charge conjugation (in strong and EM)
parity and charge conjugation (strong, EM, almost always in weak)

카이럴 대칭성

카이럴 대칭성 $=>$ 입자의 진행 방향에 대하여 스핀이 오른쪽 회전 $(+1)$

$$
\text { 스핀이 왼쪽 회전 }(-1)
$$

A. '대칭성의 자발적인 파과’란?

B. '카이럴 대칭성’의 파괴는 '질량의 발생'을 의미한다

1. '카이럴 대칭성' 이란? 입자의 진행 방향에 대해, 스핀이 오른쪽 으로 도는지 왼쪽으로 도는지의 구별을 '카이럴리티(chirality)'라고 한다. 어느 입자에서 관측해도 카이럴리티가 변하지 않는 것을 '카이럴 대칭성' 이라 한다.

입자의 진행 방향에 대해 'ㅇㅗㅗ록
 카이렬리클 = +1
입자의 진행 방향에 대혜 윤훅 률
2. '카이럴 대칭성의 파괴'는 무엇을 의미하나?

입자가 광속 미만(=질량이 있음)이라면, 정지하고 있는 관측자와 입지를 추릋ㅊ츨 관축자에게는 입자의 카이럴리티가 일치하지 않는다카이럴 대칭성의 파괴). 캐교페 대칭성이 유지되는 것은 광속으로 달리는 입자뿐이다(=질량 0)

질량이 없는 광자만 카이럴 대칭성을 가진다. => "카이럴 대칭성" 파괴는 질량을 가진다.

We are all the children of Broken symmetry

- A group is a set of elements plus a composition rule (a, b, $\mathbf{c}, \mathbf{I}, . . \in G$) such that

1. Combining two elements under the rule((\cdot) gives another of the elements
$\mathbf{a}, \mathbf{b} \in \mathbf{G},=>\mathbf{a} \bullet \mathbf{b} \in \mathbf{G}$
2. There is an identify element I so that for arbitrary a in the group elements

$$
a \bullet I=I \bullet a=a
$$

3. For arbitrary a, there exists unique inverse a^{-1} with

$$
a \bullet a^{-1}=a^{-1} \bullet a=I
$$

4. The composition rule is associative
$\mathbf{a} \bullet(\mathrm{b} \bullet \mathbf{c})=(\mathbf{a} \bullet \mathbf{b}) \bullet c$

Lorentz Transformation

From this, one can find the following interesting properties of $\Lambda(\omega)$:

1.	$\Lambda(\omega) \Lambda\left(\omega^{\prime}\right)=\Lambda\left(\omega+\omega^{\prime}\right)$	$;$
2.	Closure	
${ }^{3} \Lambda(0)=I$	$;$	${ }^{\exists}$ Identity
3.	${ }^{3} \Lambda^{-1}(\omega)=\Lambda(-\omega)$	$;$
3 Inverse		
4.	$\Lambda(\omega)\left\{\Lambda\left(\omega^{\prime}\right) \Lambda\left(\omega^{\prime \prime}\right)\right\}$	
	$=\left\{\Lambda(\omega) \Lambda\left(\omega^{\prime}\right)\right\} \Lambda\left(\omega^{\prime \prime}\right)$	Associativity

These four properties are exactly the properties of a group in mathematics. Thus, one finds that the Lorentz transformation satisfies the group properties and can be given by a group representation. There are two distinguished groups in mathematics. One group is called a discrete group and the other is called a continuous group. Since the above example of Lorentz transformation has continuous group elements represented by a continuous variable ω, the above example belongs to the continuous group. The continuous group has been investigated thoroughly by a Norwegian mathematician Sophus Lie (1842-1899) and thus people often call the ontinueus group as tie group. The basic Lie groups of nirill matices in (d is the dimension of the group) are listed in the following Table 2.1.

Table 2.1: Basic Lie Groups

$\mathrm{GL}(n, \mathrm{C})$	General(G) linear(L) group of complex(C) regular $(\operatorname{det} M \neq 0)$ matrices ; $d=2 n^{2}$
SL(n, C)	Special(S: $\left.\operatorname{det} M_{1}=1\right)$ linear group, subgroup of $\operatorname{GL}(n$, C); $d=2\left(n^{2}-1\right)$
$\mathrm{GL}(n, \mathrm{R})$	General linear group of reall(R) regular matrices; $d=n^{2}$
SL(n, R)	Special linear group of real matrices, a subgroup of $\operatorname{GL}(n, \mathrm{R}) ; d=n^{2}-1$
$\mathrm{U}(n)$	Unitary group of unitary(U : $M M^{\dagger}=M^{\dagger} M=1$, where M^{\dagger} is the Hermitian conjugate of M) matrices; $d=n^{2}$
$\mathrm{SU}(n)$	Special unitary group, a subgroup of $\mathrm{U}(n)$; $d=n^{2}-1$
$\mathrm{O}(n, \mathrm{C})$	Orthogonal (O) group of complex orthogonal matrices ($M M^{T}=1$, where M^{T} is the transposed M); $d=n(n-1)$
$\mathrm{O}(n) \equiv \mathrm{O}(n, \mathrm{R})$	Orthogonal group of real orthogonal matrices, $d=n(n-1) / 2$
$\mathrm{SO}(n)$	Special orthogonal group or group of rotations in ndimensional space, a subgroup of $\mathrm{O}(\mathrm{n}) ; d=n(n-1) / 2$
$\mathrm{Sp}(n)$	Symplectic(Sp) group of unitary $n \times n$ matrices, where n is even, satisfying the condition $M^{T} J M=J$, where J is a nonsingular antisymmetrical matrix.
$\mathrm{U}(m, n-m)$	Pseudo-unitary group of complex matrices satisfying the condition $M g M^{\dagger}=g$, where g is a diagonal matrix with elements $g_{k k}=1$ for $1 \leq k \leq m$ and $g_{k k}=-1$ for $m+1 \leq k \leq n ; d=n^{2}$
$\mathrm{O}(m, n-m)$	Pseudo-orthogonal group of real matrices satisfying the condition $M g M^{T}=g ; d=n(n-1) / 2$

Ex] The set of all complex phase factors of a wave function
$U(\theta)=e^{i \theta}$ where θ is a real parameter.
(a) $U(\theta) L\left(\theta^{\prime}\right)=e^{i\left(\theta+\theta^{\prime}\right)}=U\left(\theta+\theta^{\prime}\right) \in$ Group
(b) $\Delta(0)=I$

$$
\text { (} \because) \quad U(\theta) U(-\theta)=U(-\theta) U(\theta)=U(0)=I
$$

(c) $7^{\forall} \theta, \quad U^{-1}(\theta)=v(-\theta)$
(d) Associative law

$$
\begin{aligned}
{\left[U\left(\theta_{1}\right) U\left(\theta_{2}\right)\right] U\left(\theta_{3}\right) } & =e^{i \theta_{1}+\theta_{2}} e^{i \theta_{3}} \\
& =e^{i\left(\theta_{1}+\theta_{2}+\theta_{3}\right)} \\
& =e^{i \theta_{1}} e^{i\left(\theta_{2}+\theta_{3}\right)} \\
& =U\left(\theta_{1}\right) U\left(\theta_{2}+\theta_{3}\right) \\
& =U\left(\theta_{1}\right)\left[U\left(\theta_{2}\right)\left(d\left(\theta_{3}\right)\right]\right.
\end{aligned}
$$

\Rightarrow One dimensional unitary Group

$$
" L(l)
$$

(1) Eachelenent is characterized by a continuous parameter $\theta, \quad 0 \leq \theta \leq 2 \pi$
(2)

$$
\begin{aligned}
d u & =U(\theta+d \theta)-U(\theta) \\
& =e^{i(\theta+d \theta)}-e^{i \theta} \\
& =e^{r \theta}(1+i d \theta)-e^{i \theta} \\
& =i e^{i \theta} d \theta \\
& =i U d \theta
\end{aligned}
$$

So the elecments are differentiable
\Rightarrow Lie Group

Lie group can be written ans

$$
E\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)=\exp \left(\sum_{i=1}^{n} i \theta_{i} F_{i}\right)
$$

Flor the n parameters. there are n of thequantities F_{i}
d
Generators Fi_{i}
called Generators
\Rightarrow physically they can be thourtting ans generating the transformations

SU(n) group

- Special $\operatorname{det}|U|=1$
- Unitary U+ U=1
- The \# of independent elements

A complex flavor-mixing matrix?

Why not incorporate
CPV by making β complex?

not so simple: a 2×2 matrix has $\mathbf{8}$ parameters
unitarity: 4 conditions
4 quark fields: $\quad 3$ free phases
\# of irreducible parameters: $\quad 1$

2-generation flavor-mixing

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\cos \theta_{\mathrm{C}} & \sin \theta_{\mathrm{C}} \\
-\sin \theta_{\mathrm{C}} & \cos \theta_{\mathrm{C}}
\end{array}\right)
$$

Only 1 free parameter: the Cabibbo angle not enough degrees of freedom to incorporate a complex number

34

-Cabibbo Angle

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \vartheta_{c} & \sin \vartheta_{c} \\
-\sin \vartheta_{c} & \cos \vartheta_{c}
\end{array}\right)\binom{d}{s}
$$

35

- CKM Matrix

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{V}_{u d} & \mathrm{~V}_{u s} & \mathrm{~V}_{u b} \\
\mathrm{~V}_{c d} & \mathrm{~V}_{c s} & \mathrm{~V}_{c b} \\
\mathrm{~V}_{t d} & \mathrm{~V}_{t s} & \mathrm{~V}_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

36

Enter Kobayashi Maskawa

Suppose there are 3 quark generations:

a 3×3 matrix has 18 parameters
unitarity: 9 conditions
6 quark fields: 5 free phases
\# of irreducible parameters:

KM (+others) circa 1973 (Kyoto)

Original KM paper

From: Prog. of Theor. Phys. Vol. 49 Feb. 2, 1973

Next we consider a 6 -plet model, another interesting model of $C P$-violation. Suppose that 6 -plet with charges ($Q, Q, Q, Q-1, Q-1, Q-1$) is decomposed into $S U_{\text {max }}$ (2) multiplets as $2+2+2$ and $1+1+1+1+1+1$ for left and right components, respectively. Just as the case of (A, C), we have a similar expression for the charged weak current with a 3×3 instead of 2×2 unitary matrix in Eq. (5). As was pointed out, in this case we cannot absorb all phases of matrix elements into the ohase convention and can take, for exame'

\square The CKM Matrix

Unitary with 9*2 numbers $\rightarrow 4$ independent parameters
Many ways to write down matrix in terms of these parameters

DHeavy Flavor Physics

- 정밀측정으로 표준모형의 검증 $=>$ 새로운 물리 현상

CKM matrix elements

-Fundamental parameters of the Standard Model
-They cannot be predicted but can be measured

F. Di Lodovico, ICHEP 2008

- Introduce a new variable called rapidity ω, and represent the boosting velocity $v=\beta c$ as follows :

$$
\begin{aligned}
& \beta=\frac{v}{c}=\tanh \omega \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{\operatorname{sech}^{2} \omega}}=\cosh \omega
\end{aligned}
$$

$$
\Lambda_{v}^{u}=\Lambda(\omega)=\left[\begin{array}{cccc}
\cosh \omega & 0 & 0 & \sinh \omega \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \omega & 0 & 0 & \cosh \omega
\end{array}\right]
$$

\square Reference

Standard algebraic expressions

The hyperbolic functions are:

- Hyperbolic sine:

$$
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

- Hyperbolic cosine:

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

- Hyperbolic tangent:

$$
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

- $\Lambda(\omega)$ is Lie group

1. Closure : two succesive Lorentz transformations result in a new Lorentz transformation

$$
\Lambda_{2}{ }^{T} \Lambda_{1}{ }^{T} g \Lambda_{1} \Lambda_{2}=\Lambda_{2}{ }^{T} g \Lambda_{2}=g
$$

2. Associativity : clearly $\Lambda_{1}\left(\Lambda_{2} \Lambda_{3}\right)=\left(\Lambda_{1} \Lambda_{2}\right) \Lambda_{3}$ (composition law of matrix multiplication)
3. Identity : $\exists \Lambda(0)=I$
4. Inverse : $\exists \Lambda^{-1}(\omega)=\Lambda(-\omega)$
5. Continuous : Has continuous group elements represented by a continuous variable ω

- General form of transformation of space and time
$x^{\prime u}=\Lambda_{v}^{u} x^{v}+a^{u}$
Lorentz transformation
+ rotation

$$
\Rightarrow=>\text { Poincare group, ISL(2,C) }
$$

- 10 operations of transformation,

3 boosts $\longrightarrow 3$ boost momenta, \vec{K}
3 rotations 3 angular momenta, \vec{J}
3 space translations $\longrightarrow 3$ linear momenta, \vec{P}
1 time translation $\longrightarrow 1$ energy, E

- Conjugate to the transformation parameter,
$\vec{K} \stackrel{\text { Conjugate }}{\longleftrightarrow} \vec{\omega}, \vec{v}$
$\vec{J} \longleftrightarrow \vec{\theta}$

$E \longleftrightarrow \vec{t}$
- represent the space and time by 2 X 2 matrix \underline{X}

$$
\underline{X}=x^{u} \sigma_{u}=\left[\begin{array}{ll}
x^{0}+x^{3} & x^{1}-i x^{2} \\
x^{1}+i x^{2} & x^{0}-x^{3}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& x^{u}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{u} \underline{X}\right)
\end{aligned}
$$

- 2X2 matrix representation of the Lorentz transformation and the rotation given by

$$
\underline{\Lambda}(\vec{\theta}, \vec{\omega})=\exp \left(-\frac{i}{2}(\vec{\theta}+i \vec{\omega}) \cdot \vec{\sigma}\right) \equiv \underline{\Lambda}
$$

- Then the elements of the poincare group are ordered pair of 2 X 2 matrices given by $(\underline{\Lambda}, \underline{a})$ and $(-\underline{\Lambda}, \underline{a})$ where, $\operatorname{det} \underline{\Lambda}=1$

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Tr}\left(\underline{\Lambda} \underline{\Lambda}^{\dagger}\right)=\Lambda_{0}^{0} \geq 1 \\
& \underline{a}^{\dagger}=\underline{a}
\end{aligned}
$$

- Show that $S_{i}=\frac{1}{2} \sigma_{i}$ satisfies the Lie algebra for the angular moementum; $\left[S_{i}, S_{j}\right]=i \epsilon_{i j k} S_{k}$.
- Show that $(\boldsymbol{\sigma} \cdot \boldsymbol{a})^{2}=\boldsymbol{a}^{2}=\sum_{i} a_{i}^{2}$, where $\boldsymbol{a}=\left(a^{1}, a^{2}, a^{3}\right)$ is a real vector.
- Show that $(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})^{2 n}=1$, where $\hat{\boldsymbol{n}}^{2}=1$.
- Show that $(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})^{2 n+1}=\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$.
- Show that $U=e^{i \frac{\phi}{2} \boldsymbol{\sigma} \cdot \hat{n}}=e^{i \phi \boldsymbol{S} \cdot \hat{n}}$ produces the rotation along the axis $\hat{\boldsymbol{n}}$ by an angle ϕ.

$$
=\left(\begin{array}{ll}
\cos \frac{\phi}{2}+i \hat{n}_{3} \sin \frac{\phi}{2} & i\left(\hat{n}_{1}-i \hat{n}_{2}\right) \sin \frac{\phi}{2} \\
i\left(\hat{n}_{1}+i \hat{n}_{2}\right) \sin \frac{\phi}{2} & \cos \frac{\phi}{2}-i \hat{n}_{3} \sin \frac{\phi}{2}
\end{array}\right)
$$

8. Consider a Lorentz boost $\binom{t^{\prime}}{x^{\prime}}=L\binom{t}{x}$, where $L=\left(\begin{array}{cc}\cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha\end{array}\right)$. Show that the boost matrix can be expressed as $L=e^{\alpha \sigma_{1}}=1 \cosh \alpha+\sigma_{1} \sinh \alpha$, where
$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

References

- Also, the second rank tensor of the Lorentz transformation and the rotaion is given by

$$
\Lambda_{v}^{u}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{u} \underline{\Lambda} \sigma_{u} \underline{\Lambda}^{\dagger}\right)
$$

- four-vector a^{u} is given by

$$
a^{u}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{u} \underline{a}\right)
$$

- Then, the ISL(2,C) transformation of the space-time space is given by

$$
\underline{X}^{\prime}=\underline{\Lambda} \underline{X} \underline{\Lambda}^{\dagger}+\underline{a}
$$

, there are 10 parameters of the transformation given by $\vec{\omega}, \vec{\theta}, a^{u}$

- Homogeneous part of poincare group is called the 'proper orthochronous Lorentz group'
- Other possible conditions of $\underline{\Lambda}$ such as

$$
\begin{array}{lll}
\operatorname{det} \underline{\Lambda}=-1, \Lambda_{0}^{0} \geq 1 & \longrightarrow & \text { Parity (P) } \\
\operatorname{det} \underline{\Lambda}=-1, \Lambda_{0}^{0} \leq 1 & \longrightarrow \text { Time reversal (T) } \\
\operatorname{det} \underline{\Lambda}=+1, \Lambda_{0}^{0} \leq 1 & \text { Charge conjugation (C) }
\end{array}
$$

- Unitary representation of ISL(2,C) given by

$$
U(\underline{\Lambda}(\vec{\theta}, \vec{\omega}), \underline{a})=e^{-i\left(\vec{J} \cdot \vec{\theta}+\vec{K} \cdot \vec{\omega}+p^{u} \cdot a_{u}\right)}
$$

- Then, the infinitesimal generators are given by

$$
\begin{aligned}
& K^{j}=\left.i \frac{\partial}{\partial \omega^{j}} U(\underline{\Lambda}, \underline{a})\right|_{\vec{\omega}=\vec{\theta}=a^{u}=0} \\
& J^{j}=\left.i \frac{\partial}{\partial \theta^{j}} U(\underline{\Lambda}, \underline{a})\right|_{\vec{\omega}=\vec{\theta}=a^{u}=0} \\
& P^{u}=\left.i g^{u v} \frac{\partial}{\partial a^{v}} U(\underline{\Lambda}, \underline{a})\right|_{\vec{\omega}=\vec{\theta}=a^{u}=0}
\end{aligned}
$$

Among 10 generators, there are 45 commutation relations

- 45 commutation among 10 generators

$$
\left[J^{i}, J^{k}\right]=-i \varepsilon^{j k l} J^{l}
$$

$$
\left[K^{i}, K^{k}\right]=-i \varepsilon^{j k l} J^{l}
$$

$$
\left[J^{j}, K^{k}\right]=i \varepsilon^{j k l} K^{l}
$$

$$
\left[P^{u}, P^{v}\right]=0
$$

$$
\left[K^{j}, P^{0}\right]=-i P^{j}
$$

$\left[J^{j}, P^{0}\right]=0$
Symbol
$\left[K^{k}, P^{j}\right]=-i \delta_{j k} P^{0}$
$\left[J^{j}, P^{k}\right]=i \varepsilon^{j k l} P^{l}$

- Onbitnuri Kim
- M.A. Thompson
- Newton Magazine

Thank you.

