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Chaper 4

Group Theory




Definition of Group G

e closure under multiplication : if a,b € GG, then ab € G.

e multiplication is associative : (ab)c = a(bc).

e Jd1 € G such that la =al =a Va € G.

e Ja' € Gsuch that a la=aa™' =1Va € G.
Example)

e Show that {1} is a group.

e Show that {1,7,—i, —1} is a group.




e Show that 1 is unique : Assume 31’ € G and 1’ # 1 such that
1'a = al’” = a VYa € G. Then you will find the assumption is

wrong.
(11=1'=1)A11=11"=1)—> (1=1)

e Show that @' is unique : Assume J(a™')’ € G and
(a=1) # a1 such that (a7 !')'a = a(a™') =1 Va € G. Then
you will find the assumption is wrong.
ala) =1—aYala™)]=a'1 = [atad)(a™!) =a! —

(a—l)/ — a—I.




Example 1 2-Dimensional rotation

( /)R(gb)(x), R(@( cos sin¢)
Y Y —sing cos @

Show that R(¢) is orthogonal|each row(cloumn) is orthogonal
to the others|.

Show that Det[R(¢)] = +1.

Show that [R(¢)]™!

Show that G = {R(¢)} is a group.




Show that G = {R(¢)} is abelian(commutative);
R(¢1)R(¢p2) = R(¢p2)R(¢1).

Show that G is SO(2); special orthogonal group (2 x 2).
Subgroup is a group inside a group.

Show that {R(0), R(m)} is a subgroup in G.

Show that {R(0), R(%), R(r), R(3F)} is a subgroup in G.




invariant subgroup

e (' is an invariant subgroup of G if g¢'¢~! € G’ Vg € G and
Vg € G'.

e Show that {R(0), R(m)} is an invariant subgroup in G.

e Show that {R(0), R(%), R(r), R(3F)} is an invariant subgroup
in G.




Example 4.1.2) Similarity transformation {R.(¢)},
{R,(¢)}, and {R.(¢)} are subgroups or order 2 in SO(3).

/1 0 0 \ (Cosqb 0 —singb\
0 cosg sing 0 1 0

\O — sin @ Cosgb) \singb 0 coso )

(Cosqb sin @ O\
R.(9) —sing cos¢ 0

\ 0 0 1)

o Show that R,(5)R.(0)[R.(Z)]™! = Ry(o).

e Therefore {R,(¢)} is not an invariant subgroup.




special orthogonal group SO(n)
Show that (AB)! = BT A" for any matrices A and B.
Show that (AB)™! = B7'A~! for any matrices A and B.
Show that O; ' = O if {O;} is a SO(n) group.
Show that (010,)~! = (0,0,)"; if O; and O, are orthogonal,

then 0,0, is also an orthogonal matrix.

Show that real orthogonal n x n matrix has in(n — 1)

independent parameters.
Show that SO(2) has only one independent parameter.

Show that SO(3) has three independent parameters such as

Euler angles.




Number of independent parameters of a group

e General linear group made of real n x n matrix, GL(n, R),
has n? real elements. Show that There are n? independent
real parameters.

General linear group made of complex n X n matrix,
GL(n,C), has n? complex elements. Show that there are 2n?

independent real parameters.

Special linear group made of real n x n matrix with

determinant= +1, SL(n, R), has n” real elements and,

therefore, the determinant must be real. Show that the
condition "determinant= +1" eliminates one parameter.

There are n? — 1 independent real parameters.




Special linear group made of complex n X n matrix with
determinant= +1, SL(n,C), has n* complex elements and,
therefore, the determinant is in general complex. Show that

the condition "determinant= +1” eliminates two real

parameters. There are 2(n? — 1) independent real parameters.

Show that GL(n,C') D GL(n,R) D SL(n, R).
Show that GL(n,C) D SL(n,C) D SL(n, R).

Unitary group made of complex n x n matrix UUT = UTU =1,
SL(n,C), has n? complex elements u;;. Show that the
diagonal terms of UUT = U'U are always real and equal to 1;
n constraints. Show that the off-diagonal terms of UUT = UTU
are in general complex and equal to 0; sn(n — 1) x 2

constraints.




Show that UUT = UTU = 1 generates n? constraints and,
therefore, we have n® independent parameters for U(n).

Show that Det(AB) =Det(A)-Det(B) for any matrices A and
B.

Show that Det(A’) =Det(A) for any matrix A.
Show that Det(A™') = 1/Det(A) for any matrix A.

Show that Det(A") =[Det(A)]*.

Show that if UUT U'U = 1, then
Det(U)-[Det(U)]* = |Det(U ‘ =1 — Det(U) =€ and 0 is a
free real parameter.

Show that special unitary group SU (n) of n x n complex
matrix with the conditions UUT = UTU and Det(U) = +1.




Show that the constraint Det(U) = +1 kills the parameter 0
for Det(U) = € thus SU (n) has n? — 1 free parameters.

Complex orthogonal group O(n, C') is made of n x n complex
matrix O with OO = 010 = 1.

Show that Det(OO") = Det(1) leads to Det(O) = £1. The
determinant of an orthogonal matrix is determined and it is
not a free parameter. We may choose the sign +1 or —1. The
two matrices are completely independent. Show that the two
matrices are NOT related by any similarity transformation

U_ = PU, P! where Uy is a unitary matrix with determinant
+1. You can check it by taking determinant of both sides.

Show that diagonal Components of OOT = 010 =1 gives n
complex equations, Y 7 07 = 1+140, where i = 1,--- ,n. The




condition eliminates 2n free parameters.

Show that off-diagonal components of OO = OTO =1 gives

sn(n — 1) complex equations, Y ,_, 0i40;5 = 0 + 0, where

i, =1,---,n. The condition eliminates n(n — 1) free

parameters.

Show that the number of constrants for the complex

orthogonal group is n(n 4+ 1). Therefore O(n,C') has

n(n — 1) free real parameters.

Real orthogonal group O(n, R) is made of n x n real matrix O

with OO = 010 = 1.
Show that Det(OO") = Det(1) leads to Det(O) = £1. The

determinant of an orthogonal matrix is determined and it is

not a free parameter. We may choose the sign +1 or —1. The




two matrices are completely independent. Show that the two
matrices are NOT related by any similarity transformation
U_ = PU, P!, where Uy is a unitary matrix with determinant

+1. You can check it by taking determinant of both sides.

Show that diagonal components of OO! = 01O =1 gives n
real equations, » ,_, 05 = 1, where i = 1,--- ,n. The

condition eliminates n free parameters.

Show that off-diagonal components of OO! = 01O =1 gives

sn(n — 1) real equations, Y ;_, 05055 = 0, where

i,j =1,---,n. The condition eliminates in(n — 1) free

parameters.




Show that the number of constrants for the real orthogonal
group is in(n + 1). Therefore O(n, R) has sn(n — 1) free

real parameters.

Show that special orthogonal group SO(n,C), a group made
of the elements of O(n,C') with determinant= +1, is a

subgroup of O(n,C). Show that SO(n,C) has has n(n — 1)
free real parameters like O(n, C).

Elements of O(n,C) with determinant= —1 do not make a
group. You can check it by taking determinant of a product of
two matrices with determinant= —1 to find it is 1 instead of
—1. Show that there are n(n — 1) free real parameters in this

space.

Show that special orthogonal group SO(n, R), a group made




of the elements of O(n, R) with determinant= +1, is a
subgroup of O(n, C). Show that SO(n, R) has has Jn(n — 1)

free real parameters like O(n, R).

Elements of O(n, R) with determinant= —1 do not make a
group. You can check it by taking determinant of a product of

two martrices with determinant= —1 to find it is 1 instead of

—1. Show that there are zn(n — 1) free real parameters in

this space.




Euler angles
Show that

Ale, 8,7) = R.(7) Ry (B) R ()
( +CyC3Ca — SySa  CyC3Sq T S4Co  —CyS3 \
—84C3Cq — C4Sq  —S~CBSq T C4Ca 5483
\ 58Ca SpSa s )

where ¢, = cosa and s, = sin «, makes a SO(3) group.

e Find a, 3,7 such that A(a, 3,v) = R,(0).
e Find «, 3, such that A(a, 3,7)

=R
=R

e Find «, 3,7 such that A(a, 3,7)




special unitary group SU(n)
e Determinant is +1: special.
o Ul =UT: unitary.

e Complex n X n unitary matrix has n? — 1 degrees of freedom;

2

I
unitarity Ipet=1 = n° — 1.

N —n

Show that (AB)" = BTAT for any matrices A and B.

Show that U;Us; is unitary if U; and Us are unitary.




Let us show that complex n x n unitary matrix (a;;) with positive

determinant has n? — 1 independent parameters.

e Originally we have n* complex (2n” real) parameters because

the matrix (a;;) is n X n and complex.
Unitarity gives constraints >, (a");xa™ = >, af,ar; = 6y

for + = 5 we have n conditions

Zk( )zka Zk: ak@akz Zk; ’akiP — 1. Note that this

constraints are equations for real numbers because both side
2

are real numbers; The sum of real numbers |a;|* is real.

for ¢ # j we have n(n — 1) conditions. Note that there are

in(n — 1) equations and the left-hand side >, aj,ay; is a
complex number. Thus we have n + n(n — 1) = n* constraints




from the unitarity condition.
e The determinant is +1. This is one more constraint.

e Subtracting the number of constraints from the number of

original parametes, we get the number of independent

parameters 2n* — (n® +1) = n* — 1.




Pauli matrices and special unitary group SU(2)

Show that Tr(o;) = 0.
Show that 0,05 = 5231 + ieijka-k-

Show that |0;, 0] = 2i€;,0%.

Show that {o;,0,} = 20;,1.

Show thata o b-oco=a -b1+1axb-o.

Show that any Hermitian 2 X 2 matrix H is expressed as
H=:Tr(H) 1+ iTr(Ho) - 0.

2




Example 4.1.3 Show that G = {e",0 € R} is a unitary group
U(1); U= unitary, (1) single parameter.

° 6?:916?:92 — 6’i(91—|—92) c G

(€i91 e’ieg)ei@g — 6i91 <€’i92 €i93) — 6z’(91 —|—92—l—93) c G

e =1€ed.

(ei01)~1 = =01 — ()T ¢ .

Show that {1, —1} is a subgroup of G.
Show that {1, —1,7,—¢} is a subgroup of G.

Show that {1,01}, {1,029}, and {1, 03}, are subgroups of
SU2); Useo; =1V Ek=1,2,3.




Homomorphism) Consider two groups G and H. There is a

transform H ={h = f(g),9 € G}. If f(g9192) = f(91)f(g2), the two
groups are homomorphic.

e Show that G and H are homomorphic If
H={h=UgU ' g€ G} and G = {g};
hihy = (UgU™)(UgaU™") = U(g1g2)U 1.

Isomomorphism) Consider two groups G and H. If G and H are
homomorphic and there is one-to-one correspondence, they are

isomorphic.
e Show that G and H are homomorphic If

H={h=UgU ', geG}and G = {g};
hihy = (UgiU™ ) (UgeU™") = U(g192)U 1.




Diagonalization

e Solve the eigenvalue problem Al|z;) = \;|x;), where

0

I 0
and |zo) = (1, —1)%.

, to find )\1 — —’—1, )\2 = —1 with ’$1> — (1, —|—1)T

e Show that PAP~! =diag(\;, \2) is diagonal, where
P~ = (|z1), |22)).

e Show that P|z;) = (1,0)" and Plzs) = (0,1)%.




Reducible representation If a matrix is block-diagonalizable, it

1s reducible.

| 10\
. Show that PAP~! = is diagonal,

0 0 —1

I 1
I —1

where P~1 =

Ireducible representation Fully block-diagonalized matrix

representation.




Time-independent Schrodinger equation Hvy = E1.

e if H is invariant under the similarity transformation

RHR™'=H, [H,R] = 0.

o if |H, R| =0, ¢ and Ry are degenerate; have a common

eigenvalue.
Multiplet; basis vectors of a vector space
e spin doublet; spin T and spin | states.

o 20t lplet: [J=0, T, =mp=—0), - |J=0, T, =my=10)




Matrix representation: ©,, 1 = 1,--- ,n are basis vectors of a

vector space V.

(RY); = rthy, REG

k

i, 1s the matrix represenation of G with the basis

Irreducible representation: if { Ry;} =V, Vi, € V,;, and
VR € G, then the representation is irreducible.

Reducible representation: not irreducible.




Direct sum: If Vj; is reducible and V; are irreducible, then 3 a

unitary transform U such that UrU" is block-diagonalized as

/frl o ... \

UrU" = | 0 ro O

\: 0

And Vj;, is a direct sum of V;




e Show that

cos acos 3 — sinasin 3 = cos(a + ()

sin v cos 8 + cos asin § = sin(a + )
e Show that

cos(iar) = cosh ar, sin(ia) = isinh a.
e Show that

cosh v cosh 3 + sinh asin 3 = cosh(a + )
sinh v cosh 3 + cosh asin 8 = sinh(a + ()




e Show that L(«a)L(3) = L(a+ ) = L(G)L(«) where

cosh a sinh «
sinh o« cosh «

e Show that {L(«)} is an abelian group.
e Show that [L(a)]™' = L(—a).




4.2 (Generators of Continuous Group

e Show that (0k)” = dpn.evenl + On.0ddTk-

e Prove the Euler’s identity
elort =y (iaZ?)n =1 cosf + oy sin 0.

n=0

Show that

R(¢) = s sing =1 cos ¢ + i0ysin ¢ = €29,
—sing cos @

Using Euler’s identity, show that e?ox?1eior?z = gior(91+¢2)




exponential function of a matrix

e Show that In(1 +z) = — 320 2

e Show that lim, ... nln (1 + %) =53

e Show that lim,,_. (1 + %)n = e”.

e Show that €'° = lim,,_, (1 — %S)n, where S i1s a matrix.




Beker-Housdorff formula : Consider O = ¢! Ae—95,

e Show that

e Show that 2.0 = e'° i" f,(S, A) e7**°, where
Fus1(S, 4) = [S, £(iS, A)] and fo(S, A) = A.

e Prove the Beker-Housdorff formula O = > > f,,(S, A)%

e Using the Beker-Housdorff formula, show that e/?°e=#% = 1:
(ez’qu)_l — o—idS

e Using the Beker-Housdorff formula, show that e'?” Ae= % = A,

if A and S commute.




Generators of a group: Consider a group element
R = €'’ € G, where Det(R) = +1. Assume S is diagonalizable;
USU! =diag(A1, -+, \y).

Show that Tr(AB) =Tr(BA) VA and B.
Show that Tr(URU ') =Tr(R).

Show that Det(R) =Det(URU ") =Det(eV#4)V") =

Det[diag(e!®*, ... | ern)] = 15,
Show that S is traceless; Tr(.S) = 0.
Show that if R is unitary, then S is Hermitian.(¢ is real)

Show that if R is real orthogonal, then S is Hermitian and

pure imaginary.(¢ is real)




Consider a group R = e' 2+ %5 ¢ G of order r, where

Det(R) = +1. There are r independent parameters of

transformation. We call S}’s generators of the group.

Show that Det(.5;) does not have to be +1 unlike R.

Show that the number of generators is always same as the
order of a group. Hint: count the number of constraints and

compare with that for the group.

Show that [S;, S;] is antihermitian.
Show that {5;,5,} = 5,5, +5;S; does not have to be traceless.
Show that V antihermitian A, B = BT, where A = iB.

Show that [S;, S;] is traceless.




Show that if G'is SU(n), there are n* — 1 generators.

Show that if G is SO(n), there are n(n — 1)/2 generators.

Show that any traceless Hermitian matrix can be expressed as

a linear combination of {S;}.

Show that [S;, S;] can be expressed in a linear combination of
Sk’s. |5:, 9] =1, cijkSk, where the real numbers c¢;;;’s are

the structure constants of the group.




Show that if A and B are Hermitian, {A, B} is Hermitian.

Show that if A is Hermitian, eigenvalues are real. Hint:
H|W) = M) — (G| H ) = My|¢)). Take the complex

conjugate.

Show that if A is Hermitian of dimension n, one can choose n
eigenvectors, where any two are orthogonal to each other; they

make a basis set. Therefore, A is diagonalizable.

Show that if A is Hermitian, Tr(A) is real.




Show that TI(SZS]) — 1TI'(SZ'S]' + S]SZ) — fij is real and

2
symmetric under exchange of the two indices.

Show that Tr(S;S;) = f;; is diagonalizable.

Show that once Tr(95;S;) = fi; is diagonalized, one can choose
the normalization so that Tr(S;S5) = Ady;.

Tr([S;, S;], Sk] is totally antisymmetric under exchange of any

two 1ndices.

Show that if Tr(.S;S;) = Ad;j, ¢k is totally antisymmetric
under exchange of any two indices. Hint:

TI’(HSZ, Sj], Sk]) — 27)\0&]]{

Show that the structure constant is independent of

representation; c¢;; 1s invarinat under PSPt




Hamiltonian operator and time evolution

Show that f(z +a) =), % (z) = 99z f(x).

Show that H = z’% is the generator for the time evolution;

U(At)(t) = (t + At), where U(At) = e 1AL

Show that if Hi(t) = E(t), then 1(t) = e EU—t0)y(¢).
Show that U~ 1(At) = UT(At) = U(—At).

Show that U(At)HUT(At) = H.

Show that for a free particle(H = %) moving along the

v-axis, [H, p,] = 0 and therefore U(At)p,UT(At) = p,. Thus

e!Pe=Et) i5 the eigenstate of both H and p,, simultaneously.




Linear momentum operator and translation in 1

dimension

Show that p, = %a% is the generator for the translation;

U(Az)(x) = ¢¥(z + Ax), where U(Ax) = etP=A7,
Show that |z, p,| = 1.

Show that U™ (Az) = U'(Ax) = U(—Ax).

Show that U(Ax)p,UT(Az) = p,.

Show that U(Ax)zU'(Ax) = z + Aux.

Show that for a free particle(H = %) moving along the

r-axis, [H, p,] = 0 and therefore U(Az)p,UT(Az) = p,.




Linear momentum operator and translation in 3

dimensions

e Show that p; = ‘?U
translation; U(Aaz) (x) = Y(x + Ax), where
U(Ax) = etPaz,

Show that [x;,p;| = 10;;.

Show that U 1(Az) = U'(Ax) = U(—Ax).
Show that U(Ax)pUT(Ax) = p.

Show that U(Az)xUT(Az) = = + Ax.

Show that for a free particle(H = %) moving along the

r-axis, [H, p,] = 0 and therefore U(Az)p,UT(Ax) = p,.




Angular momentum operator and rotation in 3

dimensions

e Show that the rotation along the z—axis by an angle ¢ to the
function ¥ (x,y) is

Y(xz,y) — Ry(x,y) = Y(xcosd — ysin g,y cos @ + xsin ).
e Show that, as ¢ — 0,

(xcosg —ysing,ycos¢ + xsing) =z — yo,y + x¢) —

{1 + o (xa% — ya%” Y(x,y) = (1 +1i¢L,)Y(z,y), where

e Using lim,,_. (1 + %S)n — ¢?° show that
Ry (z,y) = ¥(x — yd,y + x¢) = e"=4(z, y),




e Show that the angular momentum operators L;, 1 = 1,2, 3 are

generators of rotation.

e Show that the angular momentum operators L; satisfies the
Lie algebra [L;.L;| = i€ L.

e Show that in the Cartesian coordinate(representation), where

V(x,y,z) = (z,y,2)", the three generators are

(00 0) ' (0 —i 0)

Li=10 0 —i]|,L2= yL3=14 0 0

\0 i 0/ ' \000).

Note that g9 =




e Show that the angular momentum operators L;, 1 =1,2,3

have three distinctive eigenvalues —1, 0, and +1.




Rotation and SU(2)
e Show that SU(n) complex matrices have n® — 1 generators.

e Show that Pauli matrices are a set of generators for SU(2).

Show that Tr(o’c?) = 20;;; A = 2.

Show that the structure constant is ¢;;, = 2€7*;

(0t 07] = 2ie%a*,

Show that the Pauli matrices are Hermitian, traceless, and
Det(c') = —1.




Show that S; = —az satisfies the Lie algebra for the angular

moementum; [S;, ;] = i€;,1Sk.

Show that (o - a)® =a* =) a?, where a = (a',a?,a’) is a

7771

real vector.
Show that (o -n)?" = 1, where n* =
Show that (o -n)*"*!' =0 - n.

Show that U = e%‘"ﬁ — 5™ produces the rotation along the
axis n by an angle ¢.

Show that U = eig"'ﬁ =1 cos% + 10 - nsin %

COS % +ingsin e ¢ (ny — iNg) sin %

COS % — 9M3 SIn %

@
2
i (g + i) sin £




Ladder operator approach: Consider the angular momentum

operators. They satisfy the following Lie algebra [J;, J;| = t€;1Jk.
e Show that [A, B*] = [A, B|B + B[A,B] VA, B.
Show that :Jl, J22 — —‘r”L(JQJg -+ J3J2).

Show that :Jl, Jg — —i(J2J3 -+ J3J2).

Show that [J;, J?] = 0, where J* = J? + J3 + J3.

Show that J? = £ (JpJ_ + J_Jy) + J2

Defining Jy = J; & iJy, show that [J?, Jy] = 0,
[JZ, Jj:] — :|:J:|:7 and [J_|_, J_] — ZJZ




Because [J?, J,] = 0, we may choose a representation |Am), where

J.|Am) = m|Am) and J?|Am) = A\|Am).
e Show that J' = J;.

e Show that Jl = Jr.

e Show that (|AB|Y) = (¢|BA|Y) if B = AT.
Show that J,Ji|Am) = (m £ 1)|Am). Thus Jy x [jm £ 1).

Using J? + J3 = J* — JZ, show that A > m? where
J2Am) = A\ Am).




e Show that J* = J=Jy + J3(J3 £ 1).

o If j = Max|m/|, J.|A\j) = 0. Using the condition, show that
A =7j(j+1). Hint: Calculate J_J|\j) = 0.

From now on, we replace the A by j.

e If j/ = Min|m|, J_|jj") = 0. Using the condition, show that
7' = —j. Hint: Calculate J,J_|jj') = 0.

e Show that there are 25 + 1 states |[ym); m = —j,—j+1,--- 7.




Homework set 1: (due: Sep 18, 2004)

1. (4.1.2) Show that rotations about the z—axis form a subgroup
of SO(3). Show that this group is not an invarinat subgroup of
SO(3).

. (4.1.5) A subgroup H of G has elements h;. Let x € G and
x ¢ H. Show that the conjuagate subgroup
vHx ' = {zhax™' |i=1,2,---} satisfies the four group

postulates and therefore is a group.

. (4.2.2) Prove that the general form of 2 x 2 unitary,
a b

unimodular matrix is U = with aa® + bb* = 1.
—b* a*

4. Based on the result, show the parametrization




cos £ +ifgsin g i (Ry — ifg)sin S

1s equivalent to

¢
2
(n1 + 1M9) sin % ;b N3 Sin %

e cosn  €Csinny
and covers all possible 3-d rotation.

—e%sinn e Zg(30877

5. Show that J-Ji|jm) = |j m(m +1)]|jm £ 1) =
(7 Fm)(7 £m+1)|jm i 1>
6. Show that Jy|jm) =+/(j Fm)(j + +1)|jm £ 1)
7. Consider a SU(2) group. Choosing the generators as one half

of the Pauli matrices, show that
0 1 0 0
S

’ —

0 0 1 0




8. Consider a Lorentz boost , where
x

cosha sinh « _
. Show that the boost matrix can be

sinh o« cosh «

expressed as L = e*®' =1 cosha + o1 sinh «, where

0 1
I 0

01 —




Chaper 6
Functions of Complex

Variables




Complex Number
C={z=o+w|zr,ye Rand 1 =+v—1}

e Show that C'is closed under multiplication.

e Show that x + iy = r(cosf + isin ), where cosf = x/r,
sinf = y/r, and r = |z| = /22 + 2.

e Defining 2* = Re(z) — ¢Im(z), show that
22" = |z]* = [Re(2)]* + [Im(2)]* = r*,

Complex Number and 2-d vector

r+iy =1e?, r=/22+ 2

rcosf, y=rsinf

xr +yy:1—to—1 correspondence




Show that 27! € C'V z € C — {0} and 27! = 2*/|z]°.

Show that arg(z29) =arg(z;)+arg(zs), where § =arg(z) and
z = |z|(cos @ + 1 sin B).

Show that R

Show that

Show that

Show that

Show that

Show that




Schwarz inequality
o Show that |z +y| < |z| + |y| V z,y € R. Hint: |z| > *=z.
o Show that |z| — |y| < |z +y| V 2,y € R. Hint: |z| > £x.

e Therefore |z| — |y| < |z +y| <|x|+ |y| V z,y € R.

Show that |z|* > 0. Thus |Az; + 2z3|* > 0.

Choose real A and show that Re(z125) < |z125| = |21]|22]-

Show that |z1||22| > +Re(z125) leads to
21| — | 22| < |21+ 22| < 21| 4+ |22] V 21,20 € C.

Interpret this result in terms of vectors.




Show that i* = —1 — *" = (—1)", " =§(—1).

Show that cosf = S Hg2n,

n=0 (2n)!

Show that sinf = > > (( D" G2l

n+1)!

n

Show that e* = > ™ %

n=0 n! -

Show that € = cos8 + isin 6

Show that || = 1.




De Moivre’s Formula
Show that zjzy = r{reetf1+02),
Show that z" = r"ei"?

Show that (a +b)" = >"1_, mrema’ " .

Show that cosnf = 2’;%" (215)_! (17»);12!/{)! cos™ 2k 9 sin* 4.

Show that

: N 2k+1<n (—1)kn! n—2k—1 ) o1 2k+1
sinnb = ) ;,_, BT 2h 1)1 COS 6 sin 6.

Prove the De Moivre’s Formula

e"? = (e?)" = (cos @ + isinf)".




Problem 6.1.6
e Show that S0 ar™~

e Show that

N-1

Z(ew)n T eif

n=0

s (N—=1)0 sin NTQ
e 2 X — 0
S111 B)

N-1)8
2

e Show that ij;ol cosnb = cos

(N-1)6

e Show that S " sinnf = sin 5




Single-slit diffraction

N

1

NZEk — Eysinwt if 0 = 0
k=1

E 2 . 0 k . Ta sin
Nosin (wt+ 7TCL;1I1 N) :E()Irrlez(“’75+2 )

E,

. 2masin @ k
—OImg gilwtt i g )
N

k=1

E
Tm

N




la)Sﬂl(Wafne)

1 —¢€°

. 27a sin 0

o

1 — e

jTa sin 0

wt 6 A

271 asin 6
N

sin (

A

€
el x

N sin (m;;\?e)

SIN o

Eb X

E|ave

X SIin
o

Eflavs

i T a81n0

Sin (

Waﬁne)
AN

Waﬁnﬁ)_

wt +

Imei(wt+ masin® N—1

A N

ma sin 6

A

)

Y,

o =

ma sin 6

A




Assumimg |p| < 1 show the following formulas.

¢ Z Op Coan_ReZ Opneme

S prsinnd = Im 3% prem?

- 1—2pcos O+p? -

_ psinf
~ 1-2pcosO+p?

> n _ 1—pcosf
ano p COS ne —_— 1_2p oS 9+p2 .

>0 n qq _ psin 6
2in=o P sinnf = 1—2pcos 0+ p2 °




Prove the following formulas.

o ¢f =" = ¢e%eW = e"(cosy + isiny).

e c P =" =¢e""(cosy —isiny).

e = T HY) — Ve — e7Y(cosx + isin ).

e~% = @) — Yo~ — Y (cosx — isinx).

et(12) +e—i(iz)

5 — cosh z.

COS 12 =

et(1z) _o—1i(i2)

21

SIN 12 = — ¢ sinh 2.

e(iz) _I_G_(iz)
2

cosh i1z = — COS 2.

e(iz) _e_(iz)
2

sinh 1z = — 7 sin 2.




Prove the following formulas.
e sin(x + iy) = sinx cosh y + i cos z sinh y.
cos(x + iy) = cosx coshy — i sin z sinh y.
cosh® y — sinh?y = 1.

sin(z + iy)|> = sin® x + sinh? y.

cos(z + iy)|? = cos?® x + sinh*y.

Vr € Rsin’z < 1.

Vo |sin(z + iy)|? > 1if |y| > In(1 + v/2).

sin z| > | sin z|.

cos z| > | cos x|.




Prove the following formulas.
e sinh(x + 2y) = sinh xz cosy + i cosh z siny.
e cosh(x 4 1y) = cosh x cosy + ¢ sin x sinh y.

e |sinh(z + iy)|?> = sinh®z + sin®y.

e |cosh(z + iy)|? = cosh® x + cos? y.




Prove the following formulas.

e sinf = QSngCOSQ.

5
cosfh =1 —281112% :2(3082§— 1.

0  1—cos@

tan 2 7 sind

1—cos 6

20 __
tan 2  1+cosf-

sinh r = 2 sinh % cosh %
cosh z = 2 sinh? % 1+ 1 = 2cosh? % — 1.

x __ coshx—1
tanh2 ~ ginhx

2 x __ coshxz—1
tanh 2  coshxz+1°




Prove the following formulas.

e |(coshz) £ 1| = (coshz cosy + 1) + (sinh z siny)? =
(cosh z £ cosy)?.

e [(coshz) £ 1][(cosh z) F 1]* = (sinhz F isiny)?.

: N2
° tanh2§ — (Smhfﬂﬂsmy) .

cosh x+cos y

2
° COth2§ _ (sinhx—isiny) .

cosh z—cosy




Square root Solve »2 — Ret®

e Solve 2% = 1.

e Solve 2? = —1.

e Solve 2% =i.




IN-th root

Solve z" = Re'®©

e Solve z° = 1.
e Solve z* = —1.

e Solve z° = 1.




Logarithm

i(9—|—2n7r)}

In 2 In [7“6
Inr + (60 + 2nm) — multi — valued
cut (fp — 7 < 0 < 6y + m) is needed

Inr — principal value

In [rei(t9—|—2n7r)]

6ln r+i(0+2n)

61nrez(0—|—2n7r)
re’ =z




Cauchy-Riemann condition If f(z) is differentiable

f'(2)

What happens if

o fEt0n) - )
dz  §2z—0 0z

0f _ . [+ 02) = £(2)

or  sz—0 Ox

0f _ . fletity)— ()
O(iy)  sy—o0 10y

af = of
s 7 8(iy)?




Laplace equation and Harmonic function: Consider a
differentiable function f(z);

Show that u, = v,, u, = —v,.

Show that ., = vy, = vy = —uy, — Vi =0

_ _ _ 2.,
Vyy = Ugy = Uyg = —Ugy — V0 =0

u and v are harmonic functions; solutions to 2-d

Laplace equation; potential function.

Show that the two 2-dimensional vectors (u,,v,) and (u,, v;)

are orthogonal; u,u, + v,v, = 0.




Analytic function: A function is analytic at z = zy; If the

function is differentiable at z = 27 and in some small region

around zy. Entire function: Analytic everywhere.

e Show that f(z
Show that f(z) =

(
(
Show that f(z) =
(
(
(

Show that f(z) =

Show that f(z) =

Show that f(z
(u=a*+9y* v=

z is analytic. (u =z, v =)
Re(z) is not analytic. (u =z, v
Im(z) is not analytic. (u

z* is not analytic. (u =z, v = —y)

2 2

is analytic. (u = z° — y?*, v = 2xy)

= |z|* = 22* is not analytic.
0)




o f(2)=u+1 and g(2) = v + v are analytic. Using

Cauchy-Rieman conditions for f(z) and ¢(z), show that
h(z) = f(z) + g(2) = U 44V is also analytic.
U=u+u, V=v+)

e f(z) =u+ivand g(z) =u' + i are analytic. Using
Cauchy-Rieman conditions for f(z) and ¢(z), show that
h(z) = f(2)g(z) = U + iV is also analytic.

(U =wuu —ov', V=u"+vu')

e Using above result, show that [f(z)]™ is analytic if f(z) is

analytic.

e Show that 2" is analytic.




Constant electric field along the x-axis

o(2) +i(z) = —Fyz
V6= —¢%— 6,9, Vio=-V-E=0

_gbaza Ey — _gby

_EO




FE field along a long charged wire

%E-dA Y
E

AT




B field around a long wire

O(2) +i(z) = ¢ +iA(2)
VxA=xB,+yB, A=2A(z,y)

0=V(V-A) -V?A=0—-V?A=0
_o04 _




A stupid way to show that z"™ is analytic

Z'n,

2k<n

(—1)*n!
2 (2k)!(

k=0

2 TRy

xn—Zk— 1 y2kz—l—1

— W(n —2k—1)!

2k+1<n

B (‘Dkn! n—2k—1_ 2k
W= ) C)n—2k 11" 7

2k<n
A - (—1)*n! n—2k, 2k—1
e kZ:O 2k —D)i(n — 2k~ 7




z* 1s NOT differentiable

T—W=u+1w —uUu=x, V= —Y

l#v,=-1, u,=—-v,=0




— 21y
(22 + y2)?
21y
(22 + y2)?

> Uy = —Uy

However, the fuction is not defined at z = 0.




Elementary functions Explain why the following functions are

analytic and prove the equalities.

2" = differentiable
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Homework set 2: (due: Sep. 25, 2004)

1. (6.1.14) Find all the zeros of (a) sinz, (b) cosz,
(¢) sinh z, (d) cosh z.

a) sin™' z = —iln (iz £ V1 — 22)
b) sinh™ z =In (z £ V22 + 1)

¢) cos™!z = —iln (iz £ V1 — 2?)
d) cosh™ 2z =1In (2 £ V22 — 1)
e) tan~! z = L 1n (=)

z =




(a) e* always equals z.

(b) Ine* does not always equals z.

4. (6.2.3) Having shown that the real part u(z,y) and the
imaginary part v(zx,y) of an analytic function w(z) each
satisfy Laplace’s equation, show that u(z,y) and v(x,y)
cannot both have either a maximum or a minimum in the
interior of any region in which w(z,y) is analytic. They can

have saddle points.

. (6.2.4) Let A = wyy, B = wyy, and C' = w,,,. From the
calculus of functions of two variables, w(z,y), we have a
saddle point if B* — AC > 0. With f(z) = u(z,y) + iv(z,y),
apply the Cauchy-Riemann conditions and show that both




u(x,y) and v(x,y) do not have a maximum or a minimum in a
finite region of the complex plain.

. (6.2.7) The function f(z) = u(zx,y) + wv(z,y) is analytic. Show
that [f(2*)]* is also analytic.

. (6.2.8) A proof of the Schwarz inequality involves minimizing

an expression

f — waa + A*wab + )\'Qb;:b - )‘wbb Z 0.

The 1) are integrals of products of functions; ,, and v, are

real, ¢, 1s complex, and A is a complex parameter.

e Differentiate the preceding expression with respect to \*,
treating A as an independent parameter, independent of \*.
Show that setting the derivative df/0\* equal to zero




yields A = —7, /p.
e Show that 0f/0X = 0 leads to the same result.

o Let A=z 41y, \* =x —1y. Set the x and y derivatives

equal to zero and show that again A = —%, /iy,




6.3 Cauchy’s Integral Theorem

Integral exists if its value is independent of the path

29 T2+1Y2
/ dzf(z) / [u + vl]|dx + idy]

1+1y1

x2+1Y2
/ ludxr — vdy]

r1+1y1
r2+1Y2
lvdz + udy|

r1+1Y1

F(z2) — F'(21)




Cauchy integral for powers: Consider a path C on a circle of

radius 7, where the center is the origin. We integrate z™ over the

circle from z = r through z = re**~.

e Show that the point on the path is z = re?, and dz = ire*?dd,
where the 0 is the polar angle.

Show that |, 2" dz =0V integer n # 1.

Show that fc % — 2.

Z_

Show that fc

dio = 0 Vzp such that |z — z| > 7.

Show that [, dz(z—20)" = 0 Vn and Vz, such that |z — 25| > 7.




If |z| > 0, 2™ is analytic for any integer n

circle of radius r, 2z =re?, dz = ire®dd

—1

[n+1

r

2m
z/ df = 2m1
0

27m')

In(re“™) —Inr = 2mi




Show that [ * f(v)de = — [ f(x)dx.
Show that [ * f(x,y)dx = — [ f(z,y)dz.
Show that [ f(2)dz = — [ f(2)dz. Hint: Rewrite the

integral in terms of the integrals of real variables x and y.

For any contour encircling z = 0 once counterclockwise,

1 m—n—1 _ :
= ¢ 2 dz = Opmn, for integers m,n




Cauchy’s integral theorem

If f(2) is analytic and its partial derivatives are continuous
throughout some simply connected region R, for every closed path

C'in R the integral of f(z) around C' vanishes or

$ 1) d:




Proof using Stoke’s theorem

V =xV, +yV,

%V ds—/VxV dA
%(Vda%\/dy ( )dx dy
C

if (V,V,) = (u, —v), %C(uda: —vdy) = — /A(Um + u, )dx dy

if (V,V,) = (v,u), ]i(vdx + udy) = /A(ux — v, )dx dy




It’s like a conservative force

i(udaz — vdy) + i %(udy + vdx)

/A [—(ve + uy) +i(uy — vy,)]dx dy =0

«— Cauchy — Riemann condition <+ analytic

/Z F(2)dz+ / F(2)dz
0

F(z2) — F'(21)

F'(z) is like a potential




Simply connected region We take a contour C'. If f(z) is
analytic Vz € R such that C' = OR, where OR is the boundary of

R, R is simply connected. For all C' C R,
fﬁ(} 2)dz = 550, 2)dz =0

Multiply connected region f(z) is analytic in R. If there is a
path C' C R such that the region surouded by the C' contains a
region R’, where f(z) is not analytic, the region R is multiply

connected.




Application Consider a contour C' and C’ which encircle the
same region R and C' ¢ R’ and C" ¢ R’, where f(z) is not
analytic in R’ and f(z) is analytic in (R')¢. Choose two very close
points A, B € C' and A’, B’ € C' and draw paths L from A to B
and L' from A’ to B’. Let L and L’ approaches arbitrarily closely
and LN L = 0.

e Show that [,, f(2)dz — 0 and [,,, f(2)dz — 0.

e Show that ¢. f(2)dz = $._,5 f(2)dz and
$or f(2)dz = 00y f(2)d2
o Show that ¢, ,, f(2)dz = ¢, f(2)dz = 0.

e Draw a closed path in a simply connected region combining
open curves passing A, B, A’, B along C — AB, C' — A'B’, L,
and L' — —L.




B J@= [ f o [ [ f o=

/Cf(Z)dZ_/C,f(z)dz—l_/Lf(Z)dz_/Lf(z)dzzo

;éf(z)dz = %le(z)dz




6.4 Cauchy’s integral formula

If f(z) is analytic in R within a boundary contour C

1 f(z) 1, f(zg) < if zg is enclosed by C.

21 Jo 2z — 2o 0 « if zy is not enclosed by C.

e Show that Z21+1 is analytic inside VC' which is parametrized as

C = {2z =re? | r < 1}. Therefore the region inside C' is

simply connected.

e Show that fc z21+1 = (0 VC which is parametrized as

C={z=re?|r<1}.




If f(2) is analytic in R within a boundary contour C
1
RN I

2T Jo, 7 — 20 Z — 20

L. /(2) dz = 7{ /(2) dz

is analytic inside C4

2T Jo, 7 — 20 sotrei® 2 — 20

—hm/ f( ZO+T€ reidd

271 r—0 ret

i () /O idf = f(z0)

7T r—0

100



n-th Derivatives If f(z) is analytic in R within a boundary
contour C' = OR. Yw such that w € R and w ¢ C show that

lim flw+0) — f(w)

6—0 5

P 2732'5 Mj > —]ZSL 5712 Ezzvdzl

1 f(2) .
clsli]% 271 7{; z — (w+5)][z—w]d

RV ION

271 C (Z — w)2

101



f(z) is analytic on and within a closed contour C.

e Show that
/
C < — ZO

e Show that

1
F(20) = _]{ : /(2) sdz Vzp enclosed by C.
C

271 z — Zo)

e Therefore

f'(2) 1= _7{ : f(2) sdz Vz enclosed by C.
C

102



n-th Derivatives f(z) is analytic on and within a closed contour
C. f™ is the n—th derivative of f(z).

e Check if
o f(2)

21t Jo (2 — 2p)

dz = f(20).

e Assume
n/! f(2)
" dz = FM) (5 )
o0mi Jo (2 — )"t z= " (20)

e Show that

(n+1)!
271

103



Hint: Show that

£ () = lim f (20 + 535 — ) ()

and use

f(”>(z0) = n—']i ( [z dz.

z — zp)"H

You must know (1/z") = —n/2"*! for z # 0.

271

Therefore, by mathematical induction, Vn > 0

nt f(z) _ )
211 Jo (2 — z)" dz = [ z0);

104



6.4.7 Legendre polynomial Now we know that for any analytic

function f(z) within the contour C' surrounding z

n!

f(n)(zo) - 2_7727{; (z — Zo)n+1 dz

Show that Legendre’s polynomial P,(x) is expressed as

1 d" (—1)™ n!
2nn! dam 2nnl 21

ST (-2
o

o 2mi Jo (2 — x)n !

P,(x)

(%~ 1)" =

where the contour encloses x once in a positive sense. This is

called Schlafli’s integral representation for the P,(x).

105



Legendre’s integral representation Choose the contour C' as a

cicle around z with radius v/1 — 22 so that z = z 4+ ie'®v/1 — 22,
where 0 < ¢ < 2. Show that

o dz = —/1—122¢"%d¢ = i(z — x)do.
o 22 —1=2(z—2z)(x+1iV1—a%cos¢).

2 n
P,(x) = ! , ]{ 1) dz
2n - 2mi Jo (2 — x)nt]

1 2T

(x +iv1— 22 cosp)"do,

or J,
1 T
P, (cos0) — / (cos @ + isin @ cos ¢)"do.
0

T

This is called Legendre’s integral representation for the P,(x).
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Generating function for the Legendre’s polynomial Change

the integration variable into ¢ = cos # + ¢ sin 6 cos ¢.

e Show that ¢ runs from e to e and
dt dt

dop = =
¢ isinflcost /12 — 2tcosfh + 1

e Show that

10
1 [° "
P,(cosf) = —/ dz - .
T Je—io /22 —2zcosO + 1

e Next We will show that

1
g(t,cosf) =

Z t"P,(cos ).
—0

V2 —2tcosf +1 —

This is called Legendre’s integral representation for the P, (x).
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Consider —1 <z <1,0<t<1l,and z€ C={e? | 0<0 < 2}

so that ' encloses x

e Show that the three points —1, z, 1 make a right triangle and
the area is |1 — 2*|/2 = Im(2).

e Show that |z — z| > Im(z) and therefore |5—

e Using P,(x) = b Gy dz and above results, show that

2M .27

the following infinite series is convergent as

— b dz
Zt Fle) = tmi Jo (z—20)(z — 2_)

n=0

where z. = % (1i\/1 —2xt+t2).
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e Show that only z_ is within the contour and the integral

becomes

=~ 1

g(t,z) =Y 1"P,(x)

VI =2t + 2

n=0

We have derived the closed form of the generating function for

Legendre’s polynomials.
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Homework set 3: (due: Oct. 9, 2004)

1. Using the Schwarz inequality to prove | [, f(2)dz| < | fmax| L,
where |f(2)| < |fmax| V2 € C and L is the length of the path
C. We will make use of this result frequently.

. We learned that z* is not analytic. We will find the integral of
2z* may depend on the path. Show that fOHi 2*dz depends on
the path. a) Integrate along C'; =t and then Cy = 1 + it,
where 0 < t < 1. b) Integrate along C'; = it and then
Cy=t+1, where 0 <t < 1.

. a) Show that fC%:OifC’isz:Tew, 0 <6 <27 and

r < 1. b) Show that ¢, Z(sz) = 2mi if C is

z=1re? 0<0<2randr < 1.
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4. Show that
a) P,(x) = Q%E!dd—;(ﬁ — 1)¢ is the solution to the Legendre’s
differential equation

a
dx

[(1 — 562)%P£(:C)] + 4L+ 1)Py(x) = 0.

b) Replacing = = cos 6, show that the Legendre’s equation is

equivalent to

ld[ d

— o |sin 9@P£(COS 9)] = (({ + 1)Py(cosf).

111



¢) Show that in the spherical coordinate system

%, ~1 0 ~ 1 %,
Vo= T e T e ae

0
Lz _Z8_¢
1 0

 sinb o6

L2

00 sin? 6 0¢?

and P,(cos#) is the eigenfunction for the orbital angular

[sm 0

(‘9] 1 0

momentum j = ¢ and j, = 0.

. Prove Morera’s Theorem: If a function f(z) is continuous in a
simply connected region R and ¢, f(z)dz = 0V closed contour
C' within R, then f(z) is analytic throughout R.

6. Prove Cauchy’s inequality: If f(z) = > " a,2" is analytic
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and bounded, |f(z)] < M on a circle of radius r about the
origin, then
an|r" < M

gives upper bounds for the coefficients of its Taylor series

expansion.

. Prove Liouville’s theorem: If f(z) is analytic and bounded in

the complex plain, it is a constant function.

. Using Liouville’s theorem, prove the fundamental theorem of

algebra: Any poplynomial P(z) = >_)'_,axz" with n > 0 and

a, #* 0 has n roots.
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6.3 Laurent Expansion

Taylor Expansion If f(z) is analytic inside the contour C

f(z)

U fwdw 1 [ f(w)du
omi Jo w—z 2w Jo (w—2) — (2 — %)
1 f(w)dw

271 C (’U] . ZO) |:1 L z—ZOi|

w—20

b () w

n=0
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e Show that In(1+4z) =—> 7 (-1)"=.
e Show that Vm € R and |z| < 1,

— 1
(1+2)™ 1+mz+m(;n . >z2

o0

2

n=0 n

is m!(”;!_ 2! seneralized into the real numbers.
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Schwarz reflection principle

e Consider a complex function g(z) = (z — x¢)", where xy and n
are real numbers. Using binominal expansion generalized to

real powers, show that [g(2)]* = (2* — x)" = g(2%).

e Consider a function which is analytic around xy € R. Show

that the Talyor expansion near the point
D ooz — 20)" f™ (z0) /n! exists.

e Show that if the function is real if z is real, then f™(xz) is
real Vn and, therefore, |f(2)]* = f(z%).
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Using Schwarz reflection principle,

e Show that [e*]* = e* .

e Show that [sin z|* = sin(z*).

e Show that [In(1+ 2)]* = In(1 + z¥).
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Analytic continuation (1 + 2)~! is NOT analytic at z = —1.

e Show that the series expansion

@)

(1+2)"t=>"7"(—2)"=1—2+2*—2"+--- converges for
2| < 1. Hint: Calculate 320 (—1)"z" and take limit n — oo.

e Above expansion is around z = 0. We know the function is
analytic Vz £ —1. Let us expand the function around zy # —1

as well as zy # 0.
1 1 1

1+z (14 29) + (2 — 20) (1 + 2) [1_|_z—zo}

1+20
1 i( z—z())n
0 1—|—ZO

e Show the series converges if |z — zg| < |1 + zg|.
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Laurent expansion Even if f(z) is singular at z5, we can expand

f(z) in terms of (z — zp)" in an analytic region between C; and Cj,
where f(z) is not analytic in R’ such that zy € R’ and C5 encloses
R’. A larger contour C] encloses both R" and Cs. If f(2) is
analytic in the region R between C; and Cs.

oo

f(2) Z an(z — 29)".

n=—oo

The series is called Laurent series. Let us derive the explicit form

of the series.
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derivation Let us evaluate the integral S; along the larger closed
contour C'{. We choose w € ('] and z € R so that
. =20l 1 Show that the integral is

" Jw—z0|
expressed as a convergent power series;

1 flw)dw 1 f(w)dw

lw — zo| > |z — 2

S1

2mi Jo, w—2z 27 Jo (w— 20) — (2 — 20)

1 f(w)dw

2mi C (w — zp) {1——

1 flw) <

211 Jo (w — zp)
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Next, we evaluate the integral S5 along the smaller closed contour
(5. We choose w € (5 and z € R so that

2 — 2| > |w — 20| — =20l < 1. Show that the integral is

V4
|z—20]

expressed as a convergent power series;

o _ L [ fwdw_ 1 [ f(w)d
? 21 Jo, 2 —w 211 Jo (2 — 29) — (W — 2p)

1 f(w)dw

270 Jo (2 — 2) {1 _

(w — z9)" !

— f(w)dw
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e Show that the sum S; — .55 is the contour integral surrounding
a simply connected region including z. Thus
1 [ f(w)dw f(w)dw]
C) |

fe)=i=5%=s01P = ~ P w—>

e Therefore,

)= 3 (2 — 20)' —

n=-—oo

where the contour C' is again enclosing multiply connected

region including z, and between C4 and (.
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Example 6.5.1: The function 1/[z(1 — z)| is not analytic at both

2z =0 and z = 1. But the function is analytic elsewhere such as

0 < |z| < 1. We want to find the Laurent expansion, for example,

around z = 0:

O

@)= spzg = 2 al=0r

n=—aoo
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Choosing the contour C' = {w | 0 < |w| < 1},
1 1

7

1 2
;+1+z+z + -
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Taylor or Laurent

1 —z

2| <1

@)

1+z—|—z2—|—z3+...:z,z”
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Series expansion examples

@ n

Z Z for all z
n!

n=0

625

— «—around z =0

1 2

z
1 o= 2"
_E :Z_:_+1+E+Z—+--- for all z # 0
anon! 2 21 3!

1
ez «— around z = o0

>~ 1 1 1
Z_:1+—+—2+--- for all z # 0
nzon!z” z 2z
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Example 6.5.2: Let us find the Laurent series of the function
eret/? =3"""  _a,2"

e Show that e* = > °° 2. and el/* =S 1

Show that f(z) is analytic except for 2 = 0 and z — o0.

Using f(z) = f(1/z), show that a_, = a,.

Show that ag is finite and ap =), (nll)Q.

Show that ay is finite and ay = a_p = >~ m

el = Y (b + S ke (5 + )]
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6.6 Mapping Consider a complex function

f(z) =w=u(z,y) +iv(x,y), 2 = x +iy =re”.

20 = Ty + 1Yy = roe’?.

e Show that the transform w = z + z; translates any geometrical

object in z-space by zj.

e Show that under the transformation w = zyz a circle of radius
r in z—space is transformed into a circle with radius |zy|r and
the phase is shifted by 6.

e Show that w = % = ei(=0).

e Show that under the transformation w = 1/z a disc of radius r
in z—space is transformed into the outside of a disc with

radius 1/r.
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Inversion: Consider the inversion

w:u%—iv:%, v =x+ 1y =re?.

e Show that if 2 + y* = r?, then v* + v? = (1/r)%

e Using u = z/r* and u? + v* = 1/r?, show that a vertical lint

r = xo transforms into a cicle

1 2 . , 1 2
u— — v = | — .
21’0 2330

e Using v = —y/r? and u? + v* = 1/r?, show that a horizontal

line y = vy transforms into a cicle

u2+<
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Using 2z = re®, show the following

e Show that a circle |z| = r transforms into a ellipsis under

w:u%—iv:zi%:

. 1 , 1\ .
u+iw=|(rE+—-|cosb+1i|rF—|]sinb,
r r

u? v?

_|_
D Gy
e Show that into limit |z| — 1, w = z + 1 — u + i0, where
—2<u <2
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f(z) = 2% : 2 — 1 Show the following properties of the

transformation f(z) = 2°.

= x+iy=re¥

I peiqb _ L2 )2,i(20)

O<b<m—-0<0o<2m

T<O0<2mr -2n< ¢ <A4nm

2

w — (20€"™)* = w, too

(x +iy)* = (z* — y°) + i(2zy)

22 — 9

21y
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f(z) =+/z:1— 2 Show that there are two roots of \/z for a
single z:

2 = x4iy=re £ =0,1,2,

» peiqb _L1/2 \/;67;(9+2k7r)/2
6 60

¢ 5 5t

if 0 <60 < 27 — single — valued

Therefore, the function is multivalued unless we impose a branch
cut.
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T+ iy = T€¢(0+2lm)7 k=012,

"t = e%e
f(Z)7 n:j:lvj:za

periodic
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f(z) =Inz: 1 — oo Show that there are infinitely many values

of In z for a single z:

2 = z4iy=re k=012,

w = In (rei(9+2"”)) =Inr+2nm, n=0,1,2,---

need cut; —m < 0 < 47

— single — valued

Therefore, the function is multivalued unless we impose a branch

cut.
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Conformal mapping: Let us consider the mapping w = 22.

e Show that © = a and v = b, where a, b are real constants,

transforms into x* + y* = a and 2zy = b.
Show that © = a and v = b are orthogonal.

Show that the normal vector to z° 4 y* = a is

ov Ov

Show that the normal vector to 2zy = b is (53, 37) = (2y, 22).

Show that the two tangent at a common point z = x + iy are

orthogonal.

We will see any pair of orthogonal curves are mapped into

orthogonal curves if the mapping function is analytic.
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Let us consider the mapping w = f(z) = u(x,y) + iv(x,y). Choose
two curves u(xz,y) = a and v(zx,y) = b passing (z,y) in the z-plain,

where a and b are real constants.

e Show that the normal vector to u(z,y) = a is (9%, g—Z).

e Show that the normal vector to v(z,y) = bis (2, g—;).

e Show that the inner product of the two 2-dimensional normal

vectors vanishes if f(z) is analytic.

Qudv  Oudv _ dudu  Oudu _

020z ydy 0oy 0,

due to the Cauchy-Riemann condition of analyticity.
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Consider an analytic function w = f(z). We will verify that the

mapping preserves the angle.

e Show that df(z)/dz exists and unique at a point z = z.

e Show that arg(%) = «, where « is real and constant at

z = 29. Is df (z)/dz independent of the path approaching

z2 = zy?!

Show that arg|df(z)] =arg(dz)+arg(a).

Choose two paths approaching z = 2y, zo + €e’* and 2y + ee’2,

where 6; and 6, are constants and we vary ¢ — 0. dz for the
two paths are e?'de and e”2de. The relative angle between the
two paths are 6, — 6,. Show that the corresponding path in
the w—plain is df[zg + €] — df[zg + 2] = 0, — 0.
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Consider a two semi-infinite plates crossing with an angle 6, at the
ends of their plains. Choose the cylindrical coordinate system
where the edge is placed at the origin and the r—axis is placed on

the plain and is normal to the edge.

e Show that the sector 0 < 6 < 0y is transformed into a strip in

the w-plain.

Assume the electric potential is V(# = 0) = 0 and
V(0 =60y =VW.

Use the symmetry to show that the potential at angle 6 is
V(0) =Vy0/0p = g—g Im(In z).

Show that w =U + iV = g—g In z is analytic and Im(w) = V.
Show that £, =




e Show that 2_15 = —i(F, —iE,) and therefore £, = Im (—%)

and E, = Re (—Z—‘;).

e Differentiating the complex potential, find the electric field

components

7 by B \ 2
E. &g:v@smé’
20072 Oy r

_VOCOSH

dw _VO VO( T y)

E

Y
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Homework set 4: (due: Oct. 16, 2004)

1. (6.5.3) Funtion f(z) is analytic on and within the unit circle
C'. Also, |f(2)| <1 for |z] <1 and f(0) = 0. Show that
1 f(2)] < |z] for |z] < 1.

2. Show that the Laurent series
erell/s =3 [ﬁ +>027, m (2% + Zik)} is convergent
Vz # 0.

3. (6.5.8) Show that the Laurent expansion of f(z) = (¢* — 1)~}

about the origin is

f(2) ”5*6*'”)




4. (6.5.11)
(a) Given fi(z) = [, e *dt(with real t), show that the
domain in Wthh f1(z) exists and it analytic is Re(z) > 0.
(b) Show that fy(z) = 1/z equals fi(z) over Re(z) > 0 and is
therefore an analytic continuation of fi(z) over the entire
z-plain except for z = 0.
(¢) Expand 1/z = 1/[i + (2 — )] about the point z =i to find
1/z2=—i) >~ i"(z —4)" for |z —i| < 1.

. (6.6.2) a) Show that the mapping w = 2= transforms the
right half of the z-plain(Re(z) > O) into the unit disc |w| < 1.
b) Show that the mapping w = 2= : transforms the upper half
of the z-plain(Im(z) < 0) into the umt disc |w| < 1.
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Mid-term Exam:
Chapter 4 and 6

Oct. 18, 2004, Monday
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Chapter 7

Complex Variable 11




We now know many properties of analytic functions.

We extensively use Cauchy integral theorem to evaluate many

important definite integrals.

entire function: Functions such as z and e® are analytic

everywhere.

singularity: Function such as 1/z has sigularity at z = 0.

The function is not analytic at the singular point. The point is
isolated because anywhere near the point the function is

analytic.

meromorphic function: a function is meromorphic if it has

a finite number of singular points.
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Poles: A series expansion near an isolated pole can be done using
Laurent series method. Consider a Laurent series exapnsion about

20 -

f(z)

pole of order n

Residue
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Essential singularity: If a series has a pole of infinite order, the
function has essential singularity at the point. e'/* as essential

singularity at z = 0. Laurent series exapnsion about |z| = oc.

oo

1
Z —— poles at z =0 for all n
— nlzm

1
— pole of any order n =1, 2, --- — essential singularity
n!
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The real function sin x is bounded. However, sin z also has an

essential singularity at z — oo(2 =t — 0);

z

. B S (_1)n22n—|—1 B 0 (_1)n
sinz=) 2n+ 1) 2 (2n + 1)l

n=0 n=0

Show that sin z = sinx cosh y + 7 cos r sinh y and that sin z is not

bounded as Im(z) — +o0.
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Branch cut

e Show that Inz = Inr + 70 is single valued only if we impose a

branch cut.

e Show that the cut of Rex < 0 and y = 0 is a choice and the
answer has the same limiting value as z approaches the

positive real axis. (Rex > 0 and y = 0)
e Show that z = e™# and lne® is not always equal to z.

e Show that z¢ = r%e' is multivalued unless we impose a cut.

62’@27? # ez’O

unless a = integer. The cut must pass the branch point z = 0.
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Functions with 2 branch points

(2% 1)1/2 — (2t 1)1/2(2 _ 1)1/2
if =z, —l<zr<l
(22 —1)1/2 ivV1—a2, —iv1—a2 : double
branch points are z = +1

need a common branch cut

=z, —1l<zr<l1

Jrr_ez 00

7“_|_629+ —nrT<0,<m

, 0< 0. <27

3
<35 (0L +6_) < g — single — valued
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Uniqueness Theorem for power series(Sec. 5.7): Assume

there are two series expansions of a function

o

flx) = Zanx”, — R, <z <R,

n=0

o0
— anx”, Ry <x <R
n=0

with overlapping intervals of convergence, including the origin.
e Substituting x = 0, show that ag = by.

e Differentiating both sides once and substituting x = 0, show
that a; = b;. Using mathematical induction, show that

a,, = b, for all n. Therefore, Talyor expansion is unique.
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Consider a function f(z) having an order-n pole at z = 2z3. One

can expand f(z) around z = z; in terms of Laurent series

. )d
expansion. f(z) =2 aiz", == § Zf(jo =, where the

contour C' is enclosing z;.

e Show that (z — 2z0)"f(2) = (z — 20)" ' [a_1 + o(z — 2p)], where
0(0) = 0.

e Show that < —(z— )" ' = (n—1)! and {doc(lz:io)} = 0.
z2=20

e Show that the residue a_q is then

a_1 = (n_l D) dcz:_l (2 —20)" f(2)],—,
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Residue Theorem: Assume f(z) has poles only at z = 2.

oo

Z an(z — z9)", a_; = residue

n=—00
2mia_q, 2o 1is inside C

0, zo is outside C
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Assume f(z) has poles at z = z1, z9,--- as

0@

> @)z = 20)" + (an)a(z = 22)" + -]

n=—oo

e Show that >~ a,(z — z)" is analytic for all z; # z;.

n=-—oo

e Show if a contour encloses poles z; through z,, show that

7{] F(2)dz = 2mi[(@) 1 + (a2) 1+ -+ (@) ],
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Calulate the residues
1

Z—1

> Residue(z =1) =1

1 1
221 (z+1D(z—1)
!

1

a_1(z=1)= 151 =35 a_1(z

Find the residue of the following function at z = 0.

1 1(1+ +20 4 ) Lo
S — =z ~ e e e ) — — ...
22(z—1) 22 22z

1 dn—l
e ) ey =2, 0 =0

[‘<z—11>2L_1 -
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Example 7.2.1: Let us evaluate the definite integral

27
do
1_/‘ <1
o 14 ecosb

e Using the following change of varibale,

e’ dz =ie"dh — df = —i

1 1
1 4+ ecosb 1+e—<z+—>:

2 z

show that the integral can be expressed as a contour integral

over a unit circle as
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/27r d@ B
o 1l-+ecosh

—2 dz
e Jo(z—21)(z—2)

1 2
A ——(1:|:\/1—€2), 2y — 2= —\1—¢€
€

€

e Show that |z, | < 1 and z_ < —1; only 2, is enclosed by the

contour of the unit circle C.

e Show that the residue for [(z — z_)(z — z)] 7' at z = 2z is
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e Finally

2T d@
el <1
o 1-+ecosl

—21  2m —21 € 2T
= —— 271 =

e zy—2. € 2/1—-¢& JI-¢
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Example 7.2.2: Let us evaluate the definite integral of a real

I:/OO dx
oo L+ 22

using the complex contour integral technique.

variable

e Show that I = limp_, f_RR 11’22, where z = x + 10.

e Let us take a contour C made of (', from —R + 10 to R + 10,
and C, along Re”. where 0 < 6 < 7. Show that

J:Lz2dj1 :/C(zﬂc)ifz—z’)

e Show that z =1 is the only pole enclosed by C and its residue

1
— J=2m Xa_(z=1) =.
2i_> T Xa_1(z=1)=m
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Show that the integral along the large semi-circle C is

reduced into

dz T d(Re') o [T df
— : — Rie" :
o, 22+ 1 o—o 1 + (Re?)? o 14 R2e??

Using | | f(2)dz| < |fmax|L, where | fpax| is the maxmum value
of the | f(z)| along the path and L is the length of the path,

show that

d 2
- §—W—>OaSR—>oo.
CQZ2+1 R

Therefore
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Example 7.2.4: Let us evaluate the definite integral

[:/ Sm$dx:1m/ e—dz.
oo T oo 2

e Take the contour C' = [—R +i0 — —¢ + i0]
+[Cy : 6e?,0 . m — 0] +[—R + 10 — —6 + 40]

+[Cy : Re?,0 : 0 — ).

e Show that the function €**/z is analytic in the region enclosed

by the contour C'. Theretore,
7{ e—dz = 0.
Cc <
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e Show that in the limit 0 — O the integral over the semi-circle

'y becomes

eiz . .
—dz = (Wl)half circle(_l)clockwise — — T
C, <

note that the path is in the negative sense.

e Show that in the limit R — oo the integral over the large

semi-circle Cy vanishes

eV T - o dz
/ ~ dz < Z/ ezRCOSH—RSHl@dH — 5= RGZG, o
Co ~ 0 <

T

_ / €_RSin9d9 _ 2/2 e—RsinQdH
0 0

s

2/26R27red921(1—6R)—>0aSR—>0.
0 R
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e Show that

e Show that

lim
d—0 -5

i [ (1 ola) 40 de

lim (26 + 0(0°)] — 0

6—0
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e Show that
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(7.2.11): Let us use the same method to calculate the integral

=

e Show that the integral can be reparametrized as

oo .2 o0 o0 W
sin“ x 1 — cos2zx ] — e**
/ " dx / 572 dr = Re/ 5. dz

— 00 — 00 — 00

5
Residue(0) s

% sin’ z
> dx
oo T

This integral appears when we derive Fermi’s Golden Rule. See

time-dependent perturbation theory in quantum mechanics.
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Feynman propagator(e¢ — 07, wy > 0)

,/OO dv e !

0

oo 2T W2 — Wi + i€

./oo dw e—iwt

0 . .
oo 27 (W — wp + i€)(w + wy — 1€)

t >0 — clockw., t < 0 — counterclockw.
e—iwot €—|—in1:

iAR(t)

closing C
Res(wo)

iAR(t)

2W0

i1(271)

2T
1

2(,00

, Res(—wy) =

_2W0

0(t)e ot

(et

2&)0

O(t)e ™0 + O(—t)e™0"]
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Mittag-Leffler Theorem: f(z) has poles zy,--- , z, inside C),(center
0). |f(zn)|/R, — 0 as R, — oo (bounded). z # z;,0,C,,.
Res(z;) = b;.

1 f(w)

fa(2) omi Jo w(w — 2)

dw < poles : z;, 0, w

n b,
ZRGS = Z B p——

m=1

27 R, |f(w)|max
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Example 7.2.7 Mittag-Leffler Theorem application:
f(z) =mcotmz — 1 has poles z =n, n==1,£2---

. (WCOST&'Z 1)
lim : — =0

z—0 SIN T2 Z

=1

Res(n) = [

i[zifu {m 1)]

n=1

T COSTTZ ] T COS NTT
z

(sinmz)’ T COS T

. @)
>
22 _ m2

n=1
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Weierstrass’ Factorization Formula : %, f(2) = (2 — zn)g(2),

g(z) is analytic and g(z,) # 0. If Mittag-Leffler Theorem is
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applicable to %,

Fe) _ (=@l 1 g6
T Gmale) i g6)

J'(0) +Z[ ! +i] (Mittag — Leffler)

o) T2
f’w
— Inf(z) — In f(0) / duw

2 — Zn  Zn
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Weierstrass’ Factorization Formula Application:
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Weierstrass’ Factorization Formula Application:

zf'(0) > Z .
0)e F© 1 — = )ewm
F(0)e g( Zn) :

22

cosz=1——+4---
z 2—1— :
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Example 7.2.5) Bessel funtion

g(z,t)

Laurent coeflicient

re' . for any integer n
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Homework set 4: (due: Oct. 16, 2004)

1. (7.1.2) There is a function of the form

_ h(z)
f2(2)’
where f;(2)’s are analytic, fo(29) = 0, fi(z0) # 0, and

f5(29) # 0. Show that f(z) has a pole of order 1 at z = z.
Show that the residue a_; for the function at z = zg is

. f1(20)
T fi(z0)

f(z)

2. Using above result show that a_; = —% at z =1 if f(2) =

2241
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