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Definition of Group G

• closure under multiplication : if a, b ∈ G, then ab ∈ G.

• multiplication is associative : (ab)c = a(bc).

• ∃1 ∈ G such that 1a = a1 = a ∀a ∈ G.

• ∃a−1 ∈ G such that a−1a = aa−1 = 1 ∀a ∈ G.

Example)

• Show that {1} is a group.

• Show that {1, i,−i,−1} is a group.
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• Show that 1 is unique : Assume ∃1′ ∈ G and 1′ 6= 1 such that

1′a = a1′ = a ∀a ∈ G. Then you will find the assumption is

wrong.

(1′1 = 11′ = 1) ∧ (1′1 = 11′ = 1′) → (1 = 1′)

• Show that a−1 is unique : Assume ∃(a−1)′ ∈ G and

(a−1)′ 6= a−1 such that (a−1)′a = a(a−1)′ = 1 ∀a ∈ G. Then

you will find the assumption is wrong.

a(a−1)′ = 1 → a−1[a(a−1)′] = a−11 → [a−1a](a−1)′ = a−1 →
(a−1)′ = a−1.
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Example 1 2-Dimensional rotation x′

y′

 = R(φ)

 x

y

 , R(φ) =

 cosφ sinφ

− sinφ cosφ


• Show that R(φ) is orthogonal[each row(cloumn) is orthogonal

to the others].

• Show that Det[R(φ)] = +1.

• Show that [R(φ)]−1 = [R(φ)]T = R(−φ).

• Show that G = {R(φ)} is a group.
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• Show that G = {R(φ)} is abelian(commutative);

R(φ1)R(φ2) = R(φ2)R(φ1).

• Show that G is SO(2); special orthogonal group (2× 2).

• Subgroup is a group inside a group.

• Show that {R(0), R(π)} is a subgroup in G.

• Show that {R(0), R(π
2
), R(π), R(3π

2
)} is a subgroup in G.
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invariant subgroup

• G′ is an invariant subgroup of G if gg′g−1 ∈ G′ ∀g ∈ G and

∀g′ ∈ G′.

• Show that {R(0), R(π)} is an invariant subgroup in G.

• Show that {R(0), R(π
2
), R(π), R(3π

2
)} is an invariant subgroup

in G.
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Example 4.1.2) Similarity transformation {Rx(φ)},
{Ry(φ)}, and {Rz(φ)} are subgroups or order 2 in SO(3).

Rx(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , Ry(φ) =


cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 ,

Rz(φ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ,

• Show that Rx(
π
2
)Rz(φ)[Rx(

π
2
)]−1 = Ry(φ).

• Therefore {Rz(φ)} is not an invariant subgroup.
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special orthogonal group SO(n)

• Show that (AB)T = BTAT for any matrices A and B.

• Show that (AB)−1 = B−1A−1 for any matrices A and B.

• Show that O−1
i = OT

i if {Oi} is a SO(n) group.

• Show that (O1O2)
−1 = (O1O2)

T ; if O1 and O2 are orthogonal,

then O1O2 is also an orthogonal matrix.

• Show that real orthogonal n× n matrix has 1
2
n(n− 1)

independent parameters.

• Show that SO(2) has only one independent parameter.

• Show that SO(3) has three independent parameters such as

Euler angles.
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Number of independent parameters of a group

• General linear group made of real n× n matrix, GL(n, R),

has n2 real elements. Show that There are n2 independent

real parameters.

• General linear group made of complex n× n matrix,

GL(n, C), has n2 complex elements. Show that there are 2n2

independent real parameters.

• Special linear group made of real n× n matrix with

determinant= +1, SL(n, R), has n2 real elements and,

therefore, the determinant must be real. Show that the

condition ”determinant= +1” eliminates one parameter.

There are n2 − 1 independent real parameters.
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• Special linear group made of complex n× n matrix with

determinant= +1, SL(n, C), has n2 complex elements and,

therefore, the determinant is in general complex. Show that

the condition ”determinant= +1” eliminates two real

parameters. There are 2(n2 −1) independent real parameters.

• Show that GL(n,C) ⊃ GL(n,R) ⊃ SL(n,R).

• Show that GL(n,C) ⊃ SL(n,C) ⊃ SL(n,R).

• Unitary group made of complex n× n matrix UU † = U †U = 1,

SL(n, C), has n2 complex elements uij. Show that the

diagonal terms of UU † = U †U are always real and equal to 1;

n constraints. Show that the off-diagonal terms of UU † = U †U

are in general complex and equal to 0; 1
2
n(n− 1)× 2

constraints.
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• Show that UU † = U †U = 1 generates n2 constraints and,

therefore, we have n2 independent parameters for U(n).

• Show that Det(AB) =Det(A)·Det(B) for any matrices A and

B.

• Show that Det(AT ) =Det(A) for any matrix A.

• Show that Det(A−1) = 1/Det(A) for any matrix A.

• Show that Det(A†) =[Det(A)]∗.

• Show that if UU † = U †U = 1, then

Det(U)·[Det(U)]∗ =
∣∣Det(U)

∣∣2 = 1→ Det(U) = eiθ and θ is a

free real parameter.

• Show that special unitary group SU(n) of n× n complex

matrix with the conditions UU † = U †U and Det(U) = +1.
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Show that the constraint Det(U) = +1 kills the parameter θ

for Det(U) = eiθ thus SU(n) has n2 − 1 free parameters.

• Complex orthogonal group O(n,C) is made of n× n complex

matrix O with OOT = OTO = 1.

• Show that Det(OOT ) = Det(1) leads to Det(O) = ±1. The

determinant of an orthogonal matrix is determined and it is

not a free parameter. We may choose the sign +1 or −1. The

two matrices are completely independent. Show that the two

matrices are NOT related by any similarity transformation

U− = PU+P
−1, where U± is a unitary matrix with determinant

±1. You can check it by taking determinant of both sides.

• Show that diagonal components of OOT = OTO = 1 gives n

complex equations,
∑n

k=1 o
2
ik = 1 + i0, where i = 1, · · · , n. The
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condition eliminates 2n free parameters.

• Show that off-diagonal components of OOT = OTO = 1 gives
1
2
n(n− 1) complex equations,

∑n
k=1 oikojk = 0 + i0, where

i, j = 1, · · · , n. The condition eliminates n(n− 1) free

parameters.

• Show that the number of constrants for the complex

orthogonal group is n(n+ 1). Therefore O(n, C) has

n(n − 1) free real parameters.

• Real orthogonal group O(n,R) is made of n× n real matrix O

with OOT = OTO = 1.

• Show that Det(OOT ) = Det(1) leads to Det(O) = ±1. The

determinant of an orthogonal matrix is determined and it is

not a free parameter. We may choose the sign +1 or −1. The
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two matrices are completely independent. Show that the two

matrices are NOT related by any similarity transformation

U− = PU+P
−1, where U± is a unitary matrix with determinant

±1. You can check it by taking determinant of both sides.

• Show that diagonal components of OOT = OTO = 1 gives n

real equations,
∑n

k=1 o
2
ik = 1, where i = 1, · · · , n. The

condition eliminates n free parameters.

• Show that off-diagonal components of OOT = OTO = 1 gives
1
2
n(n− 1) real equations,

∑n
k=1 oikojk = 0, where

i, j = 1, · · · , n. The condition eliminates 1
2
n(n− 1) free

parameters.
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• Show that the number of constrants for the real orthogonal

group is 1
2
n(n+ 1). Therefore O(n, R) has 1

2
n(n − 1) free

real parameters.

• Show that special orthogonal group SO(n,C), a group made

of the elements of O(n,C) with determinant= +1, is a

subgroup of O(n,C). Show that SO(n,C) has has n(n − 1)

free real parameters like O(n,C).

• Elements of O(n,C) with determinant= −1 do not make a

group. You can check it by taking determinant of a product of

two matrices with determinant= −1 to find it is 1 instead of

−1. Show that there are n(n − 1) free real parameters in this

space.

• Show that special orthogonal group SO(n,R), a group made
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of the elements of O(n,R) with determinant= +1, is a

subgroup of O(n,C). Show that SO(n,R) has has 1
2
n(n − 1)

free real parameters like O(n,R).

• Elements of O(n,R) with determinant= −1 do not make a

group. You can check it by taking determinant of a product of

two matrices with determinant= −1 to find it is 1 instead of

−1. Show that there are 1
2
n(n − 1) free real parameters in

this space.
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Euler angles

Show that

A(α, β, γ) ≡ Rz(γ)Ry(β)Rz(α)

=


+cγcβcα − sγsα cγcβsα + sγcα −cγsβ
−sγcβcα − cγsα −sγcβsα + cγcα sγsβ

sβcα sβsα cβ

 ,

where cα = cosα and sα = sinα, makes a SO(3) group.

• Find α, β, γ such that A(α, β, γ) = Rx(θ).

• Find α, β, γ such that A(α, β, γ) = Ry(θ).

• Find α, β, γ such that A(α, β, γ) = Rz(θ).
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special unitary group SU(n)

• Determinant is +1: special.

• U−1 = U †: unitary.

• Complex n× n unitary matrix has n2 − 1 degrees of freedom;

2n2 − n2
unitarity − 1Det=1 = n2 − 1.

• Show that (AB)† = B†A† for any matrices A and B.

• Show that U1U2 is unitary if U1 and U2 are unitary.
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Let us show that complex n× n unitary matrix (aij) with positive

determinant has n2 − 1 independent parameters.

• Originally we have n2 complex (2n2 real) parameters because

the matrix (aij) is n× n and complex.

• Unitarity gives constraints
∑

k(a
†)ika

kj =
∑

k a
∗
kiakj = δij.

• for i = j we have n conditions∑
k(a

†)ika
ki =

∑
k a

∗
kiaki =

∑
k |aki|2 = 1. Note that this

constraints are equations for real numbers because both side

are real numbers; The sum of real numbers |aki|2 is real.

• for i 6= j we have n(n− 1) conditions. Note that there are
1
2
n(n− 1) equations and the left-hand side

∑
k a

∗
kiakj is a

complex number. Thus we have n+ n(n− 1) = n2 constraints
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from the unitarity condition.

• The determinant is +1. This is one more constraint.

• Subtracting the number of constraints from the number of

original parametes, we get the number of independent

parameters 2n2 − (n2 + 1) = n2 − 1.
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Pauli matrices and special unitary group SU(2)

1 =

 1 0

0 1

 , σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1


• Show that Tr(σi) = 0.

• Show that σiσj = δij1 + iεijkσk.

• Show that [σi, σj] = 2iεijkσk.

• Show that {σi, σj} = 2δij1.

• Show that a · σ b · σ = a · b 1 + ia× b · σ.

• Show that any Hermitian 2× 2 matrix H is expressed as

H = 1
2
Tr(H) 1 + 1

2
Tr(Hσ) · σ.
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Example 4.1.3 Show that G = {eiθ, θ ∈ R} is a unitary group

U(1); U= unitary, (1) single parameter.

• eiθ1eiθ2 = ei(θ1+θ2) ∈ G.

• (eiθ1eiθ2)eiθ3 = eiθ1(eiθ2eiθ3) = ei(θ1+θ2+θ3) ∈ G.

• ei0 = 1 ∈ G.

• (eiθ1)−1 = e−iθ1 = (eiθ1)† ∈ G.

• Show that {1,−1} is a subgroup of G.

• Show that {1,−1, i,−i} is a subgroup of G.

• Show that {1, σ1}, {1, σ2}, and {1, σ3}, are subgroups of

SU(2); Use σ2
k = 1 ∀ k = 1, 2, 3.
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Homomorphism) Consider two groups G and H. There is a

transform H = {h = f(g), g ∈ G}. If f(g1g2) = f(g1)f(g2), the two

groups are homomorphic.

• Show that G and H are homomorphic If

H = {h = UgU−1, g ∈ G} and G = {g};
h1h2 = (Ug1U

−1)(Ug2U
−1) = U(g1g2)U

−1.

Isomomorphism) Consider two groups G and H. If G and H are

homomorphic and there is one-to-one correspondence, they are

isomorphic.

• Show that G and H are homomorphic If

H = {h = UgU−1, g ∈ G} and G = {g};
h1h2 = (Ug1U

−1)(Ug2U
−1) = U(g1g2)U

−1.
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Diagonalization

• Solve the eigenvalue problem A|xi〉 = λi|xi〉, where

A =

 0 1

1 0

, to find λ1 = +1, λ2 = −1 with |x1〉 = (1,+1)T

and |x2〉 = (1,−1)T .

• Show that PAP−1 =diag(λ1, λ2) is diagonal, where

P−1 = (|x1〉, |x2〉).

• Show that P |x1〉 = (1, 0)T and P |x2〉 = (0, 1)T .
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Reducible representation If a matrix is block-diagonalizable, it

is reducible.

• A =

 0 1

1 0

. Show that PAP−1 =

 1 0

0 −1

 is diagonal,

where P−1 =

 1 1

1 −1

.

Ireducible representation Fully block-diagonalized matrix

representation.
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Time-independent Schrödinger equation Hψ = Eψ.

• if H is invariant under the similarity transformation

RHR−1 = H, [H,R] = 0.

• if [H,R] = 0, ψ and Rψ are degenerate; have a common

eigenvalue.

Multiplet; basis vectors of a vector space

• spin doublet; spin ↑ and spin ↓ states.

• 2`+ 1-plet; |J = `, Jz = m` = −`〉, · · · , |J = `, Jz = m` = `〉

28



Matrix representation: ψi, i = 1, · · · , n are basis vectors of a

vector space Vψ.

(Rψ)j =
∑
k

rjkψk, R ∈ G

rjk is the matrix represenation of G with the basis

{ψi | i = 1, · · · , n}.
Irreducible representation: if {Rψi} = Vψ ∀ψi ∈ Vψ and

∀R ∈ G, then the representation is irreducible.

Reducible representation: not irreducible.
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Direct sum: If Vψ is reducible and Vi are irreducible, then ∃ a

unitary transform U such that UrU † is block-diagonalized as

UrU † =


r1 0 . . .

0 r2 0
... 0

. . .


And Vψ is a direct sum of Vi

Vψ = V1 ⊕ V2 ⊕ · · · ⊕ Vn−1 ⊕ Vn
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• Show that

cosα cos β − sinα sin β = cos(α+ β)

sinα cos β + cosα sin β = sin(α+ β)

• Show that

cos(iα) = coshα, sin(iα) = i sinhα.

• Show that

coshα cosh β + sinhα sin β = cosh(α+ β)

sinhα cosh β + coshα sin β = sinh(α+ β)
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• Show that L(α)L(β) = L(α+ β) = L(β)L(α) where

L(α) =

coshα sinhα

sinhα coshα


• Show that {L(α)} is an abelian group.

• Show that [L(α)]−1 = L(−α).
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4.2 Generators of Continuous Group

• Show that (σk)
n = δn,even1 + δn,oddσk.

• Prove the Euler’s identity

eiσkθ ≡
∑∞

n=0
(iσkθ)

n

n!
= 1 cos θ + iσk sin θ.

• Show that

R(φ) =

 cosφ sinφ

− sinφ cosφ

 = 1 cosφ+ iσ2 sinφ = eiσ2φ.

• Using Euler’s identity, show that eiσkφ1eiσkφ2 = eiσk(φ1+φ2)
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exponential function of a matrix

• Show that ln(1 + x) = −
∑∞

k=0
(−x)k

k!
.

• Show that limn→∞ n ln
(
1 + x

n

)
= x.

• Show that limn→∞
(
1 + x

n

)n
= ex.

• Show that eiφS = limn→∞
(
1 + iφ

n
S
)n

, where S is a matrix.
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Beker-Housdorff formula : Consider O = eiφSAe−iφS.

• Show that ∂
∂φ
O = eiφS i[S,A] e−iφS.

• Show that ∂n

∂φnO = eiφS in fn(S,A) e−iφS, where

fn+1(S,A) = [S, fn(iS, A)] and f0(S,A) = A.

• Prove the Beker-Housdorff formula O =
∑∞

n=0 fn(S,A) (iφ)n

n!
.

• Using the Beker-Housdorff formula, show that eiφSe−iφS = 1;(
eiφS

)−1
= e−iφS.

• Using the Beker-Housdorff formula, show that eiφSAe−iφS = A,

if A and S commute.
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Generators of a group: Consider a group element

R = eiφS ∈ G, where Det(R) = +1. Assume S is diagonalizable;

USU−1 = diag(λ1, · · · , λn).

• Show that Tr(AB) =Tr(BA) ∀A and B.

• Show that Tr(URU−1) =Tr(R).

• Show that Det(R) =Det(URU−1) =Det(eU(iφS)U−1
) =

Det[diag(eiφλ1 , · · · , eiφλn)] = eiφTrS.

• Show that S is traceless; Tr(S) = 0.

• Show that if R is unitary, then S is Hermitian.(φ is real)

• Show that if R is real orthogonal, then S is Hermitian and

pure imaginary.(φ is real)
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Consider a group R = ei
∑

k φkSk ∈ G of order r, where

Det(R) = +1. There are r independent parameters of

transformation. We call Sk’s generators of the group.

• Show that Det(Si) does not have to be +1 unlike R.

• Show that the number of generators is always same as the

order of a group. Hint: count the number of constraints and

compare with that for the group.

• Show that [Si, Sj] is antihermitian.

• Show that {Si, Sj} ≡ SiSj +SjSi does not have to be traceless.

• Show that ∀ antihermitian A, B = B†, where A = iB.

• Show that [Si, Sj] is traceless.
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• Show that if G is SU(n), there are n2 − 1 generators.

• Show that if G is SO(n), there are n(n− 1)/2 generators.

• Show that any traceless Hermitian matrix can be expressed as

a linear combination of {Si}.

• Show that [Si, Sj] can be expressed in a linear combination of

Sk’s. [Si, Sj] = i
∑

k cijkSk, where the real numbers cijk’s are

the structure constants of the group.
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• Show that if A and B are Hermitian, {A,B} is Hermitian.

• Show that if A is Hermitian, eigenvalues are real. Hint:

H|ψ〉 = λ|ψ〉 → 〈ψ|H|ψ〉 = λ〈ψ|ψ〉. Take the complex

conjugate.

• Show that if A is Hermitian of dimension n, one can choose n

eigenvectors, where any two are orthogonal to each other; they

make a basis set. Therefore, A is diagonalizable.

• Show that if A is Hermitian, Tr(A) is real.
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• Show that Tr(SiSj) = 1
2
Tr(SiSj + SjSi) = fij is real and

symmetric under exchange of the two indices.

• Show that Tr(SiSj) = fij is diagonalizable.

• Show that once Tr(SiSj) = fij is diagonalized, one can choose

the normalization so that Tr(S ′iS
′
j) = λδij.

• Tr[[Si, Sj], Sk] is totally antisymmetric under exchange of any

two indices.

• Show that if Tr(SiSj) = λδij, cijk is totally antisymmetric

under exchange of any two indices. Hint:

Tr([[Si, Sj], Sk]) = 2iλcijk.

• Show that the structure constant is independent of

representation; cijk is invarinat under PSiP
−1.
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Hamiltonian operator and time evolution

• Show that f(x+ a) =
∑∞

n=0
an

n!
∂n

∂xnf(x) = e±a
∂

∂xf(x).

• Show that H = i ∂
∂t

is the generator for the time evolution;

U(∆t)ψ(t) = ψ(t+ ∆t), where U(∆t) = e−iH∆t.

• Show that if Hψ(t) = Eψ(t), then ψ(t) = e−iE(t−t0)ψ(t0).

• Show that U−1(∆t) = U †(∆t) = U(−∆t).

• Show that U(∆t)HU †(∆t) = H.

• Show that for a free particle(H = p2x
2m

) moving along the

x-axis, [H, px] = 0 and therefore U(∆t)pxU
†(∆t) = px. Thus

ei(pxx−Et) is the eigenstate of both H and px, simultaneously.
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Linear momentum operator and translation in 1

dimension

• Show that px = 1
i
∂
∂x

is the generator for the translation;

U(∆x)ψ(x) = ψ(x+ ∆x), where U(∆x) = e+ipx∆x.

• Show that [x, px] = i.

• Show that U−1(∆x) = U †(∆x) = U(−∆x).

• Show that U(∆x)pxU
†(∆x) = px.

• Show that U(∆x)xU †(∆x) = x+ ∆x.

• Show that for a free particle(H = p2x
2m

) moving along the

x-axis, [H, px] = 0 and therefore U(∆x)pxU
†(∆x) = px.
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Linear momentum operator and translation in 3

dimensions

• Show that pi = 1
i
∂
∂xi

’s are the generators for the 3-d

translation; U(∆x)ψ(x) = ψ(x + ∆x), where

U(∆x) = e+ip·∆x.

• Show that [xi, pj] = iδij.

• Show that U−1(∆x) = U †(∆x) = U(−∆x).

• Show that U(∆x)pU †(∆x) = p.

• Show that U(∆x)xU †(∆x) = x + ∆x.

• Show that for a free particle(H = p2x
2m

) moving along the

x-axis, [H, px] = 0 and therefore U(∆x)pxU
†(∆x) = px.
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Angular momentum operator and rotation in 3

dimensions

• Show that the rotation along the z−axis by an angle φ to the

function ψ(x, y) is

ψ(x, y)→ Rψ(x, y) = ψ(x cosφ− y sinφ, y cosφ+ x sinφ).

• Show that, as φ→ 0,

ψ(x cosφ− y sinφ, y cosφ+ x sinφ)→ψ(x− yφ, y + xφ)→[
1 + φ

(
x ∂
∂y
− y ∂

∂x

)]
ψ(x, y) = (1 + iφLz)ψ(x, y), where

Lz = xpy − ypx = 1
i

(
x ∂
∂y
− y ∂

∂x

)
.

• Using limn→∞
(
1 + φ

n
S
)n

= eφS, show that

Rψ(x, y) = ψ(x− yφ, y + xφ) = e+iφLzψ(x, y).
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• Show that the angular momentum operators Li, i = 1, 2, 3 are

generators of rotation.

• Show that the angular momentum operators Li satisfies the

Lie algebra [Li.Lj] = iεijkLk.

• Show that in the Cartesian coordinate(representation), where

ψ(x, y, z) = (x, y, z)T , the three generators are

L1 =


0 0 0

0 0 −i

0 i 0

 , L2 =


0 0 i

0 0 0

−i 0 0

 , L3 =


0 −i 0

i 0 0

0 0 0

 .

Note that σ2 =

0 −i

i 0

 .
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• Show that the angular momentum operators Li, i = 1, 2, 3

have three distinctive eigenvalues −1, 0, and +1.
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Rotation and SU(2)

• Show that SU(n) complex matrices have n2 − 1 generators.

• Show that Pauli matrices are a set of generators for SU(2).

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1


• Show that Tr(σiσj) = 2δij; λ = 2.

• Show that the structure constant is cijk = 2εijk;

[σi, σj] = 2iεijkσk.

• Show that the Pauli matrices are Hermitian, traceless, and

Det(σi) = −1.
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• Show that Si = 1
2
σi satisfies the Lie algebra for the angular

moementum; [Si, Sj] = iεijkSk.

• Show that (σ · a)2 = a2 =
∑

i a
2
i , where a = (a1, a2, a3) is a

real vector.

• Show that (σ · n̂)2n = 1, where n̂2 = 1.

• Show that (σ · n̂)2n+1 = σ · n̂.

• Show that U = ei
φ
2
σ·n̂ = eiφS·n̂ produces the rotation along the

axis n̂ by an angle φ.

• Show that U = ei
φ
2
σ·n̂ = 1 cos φ

2
+ iσ · n̂ sin φ

2
.

=

cos φ
2

+ in̂3 sin φ
2

i (n̂1 − in̂2) sin φ
2

i (n̂1 + in̂2) sin φ
2

cos φ
2
− in̂3 sin φ

2
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Ladder operator approach: Consider the angular momentum

operators. They satisfy the following Lie algebra [Ji, Jj] = iεijkJk.

• Show that [A,B2] = [A,B]B +B[A,B] ∀A, B.

• Show that [J1, J
2
2 ] = +i(J2J3 + J3J2).

• Show that [J1, J
2
3 ] = −i(J2J3 + J3J2).

• Show that [Ji,J
2] = 0, where J2 = J2

1 + J2
2 + J2

3 .

• Show that J2 = 1
2
(J+J− + J−J+) + J2

z

• Defining J± = J1 ± iJ2, show that [J2, J±] = 0,

[Jz, J±] = ±J±, and [J+, J−] = 2Jz.
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Because [J2, Jz] = 0, we may choose a representation |λm〉, where

Jz|λm〉 = m|λm〉 and J2|λm〉 = λ|λm〉.

• Show that J†i = Ji.

• Show that J†± = J∓.

• Show that 〈ψ|AB|ψ〉 = 〈ψ|BA|ψ〉 if B = A†.

• Show that JzJ±|λm〉 = (m± 1)|λm〉. Thus J± ∝ |jm± 1〉.

• Using J2
1 + J2

2 = J2 − J2
3 , show that λ ≥ m2, where

J2|λm〉 = λ|λm〉.
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• Show that J2 = J∓J± + J3(J3 ± 1).

• If j = Max[m], J+|λj〉 = 0. Using the condition, show that

λ = j(j + 1). Hint: Calculate J−J+|λj〉 = 0.

From now on, we replace the λ by j.

• If j′ = Min[m], J−|jj′〉 = 0. Using the condition, show that

j′ = −j. Hint: Calculate J+J−|jj′〉 = 0.

• Show that there are 2j + 1 states |jm〉; m = −j,−j + 1, · · · , j.
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Homework set 1: (due: Sep 18, 2004)

1. (4.1.2) Show that rotations about the z−axis form a subgroup

of SO(3). Show that this group is not an invarinat subgroup of

SO(3).

2. (4.1.5) A subgroup H of G has elements hi. Let x ∈ G and

x /∈ H. Show that the conjuagate subgroup

xHx−1 = {xhix−1 | i = 1, 2, · · · } satisfies the four group

postulates and therefore is a group.

3. (4.2.2) Prove that the general form of 2× 2 unitary,

unimodular matrix is U =

 a b

−b∗ a∗

 with aa∗ + bb∗ = 1.

4. Based on the result, show the parametrization
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cos φ
2

+ in̂3 sin φ
2

i (n̂1 − in̂2) sin φ
2

i (n̂1 + in̂2) sin φ
2

cos φ
2
− in̂3 sin φ

2

 is equivalent to eiξ cos η eiζ sin η

−e−iζ sin η e−iξ cos η

 and covers all possible 3-d rotation.

5. Show that J∓J±|jm〉 = [j(j + 1)−m(m± 1)] |jm± 1〉 =

(j ∓m)(j ±m+ 1)|jm± 1〉

6. Show that J±|jm〉 =
√

(j ∓m)(j ±+1)|jm± 1〉

7. Consider a SU(2) group. Choosing the generators as one half

of the Pauli matrices, show that

S+ =

0 1

0 0

 , S− =

0 0

1 0
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8. Consider a Lorentz boost

t′

x′

 = L

t

x

, where

L =

coshα sinhα

sinhα coshα

 . Show that the boost matrix can be

expressed as L = eασ1 = 1 coshα+ σ1 sinhα, where

σ1 =

0 1

1 0
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Chaper 6
Functions of Complex

Variables
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Complex Number

C ≡ {z = x+ iy | x, y ∈ R and i =
√
−1}

• Show that C is closed under multiplication.

• Show that x+ iy = r(cos θ + i sin θ), where cos θ = x/r,

sin θ = y/r, and r = |z| ≡
√
x2 + y2.

• Defining z∗ = Re(z)− iIm(z), show that

zz∗ = |z|2 = [Re(z)]2 + [Im(z)]2 = r2.

Complex Number and 2-d vector

z = x+ iy = reiθ, r =
√
x2 + y2

x = r cos θ, y = r sin θ

r = x̂x+ ŷy : 1− to− 1 correspondence
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• Show that z−1 ∈ C ∀ z ∈ C − {0} and z−1 = z∗/|z|2.

• Show that arg(z1z2) =arg(z1)+arg(z2), where θ =arg(z) and

z = |z|(cos θ + i sin θ).

• Show that |z| ≥ |Re(z)| ≥ Re(z).

• Show that |z| ≥ |Im(z)| ≥ Im(z).

• Show that |z1z2| ≥ |Re(z1z2)|, |Im(z1z2)|.

• Show that |z1z2| ≥ |Re(z1z
∗
2)|, |Im(z1z

∗
2)|.

• Show that |z| ± Re(z) ≥ 0.

• Show that |z| ± Im(z) ≥ 0.
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Schwarz inequality

• Show that |x+ y| ≤ |x|+ |y| ∀ x, y ∈ R. Hint: |x| ≥ ±x.

• Show that |x| − |y| ≤ |x+ y| ∀ x, y ∈ R. Hint: |x| ≥ ±x.

• Therefore |x| − |y| ≤ |x+ y| ≤ |x|+ |y| ∀ x, y ∈ R.

• Show that |z|2 ≥ 0. Thus |λz1 + z2|2 ≥ 0.

• Choose real λ and show that Re(z1z
∗
2) ≤ |z1z

∗
2 | = |z1||z2|.

• Show that |z1||z2| ≥ ±Re(z1z
∗
2) leads to

|z1| − |z2| ≤ |z1 + z2| ≤ |z1|+ |z2| ∀ z1, z2 ∈ C.

• Interpret this result in terms of vectors.
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eiθ

• Show that i2 = −1→ i2n = (−1)n, i2n+1 = i(−1)n.

• Show that cos θ =
∑∞

n=0
(−1)n

(2n)!
θ2n.

• Show that sin θ =
∑∞

n=0
(−1)n

(2n+1)!
θ2n+1.

• Show that ez =
∑∞

n=0
zn

n!
.

• Show that eiθ = cos θ + i sin θ

• Show that |eiθ| = 1.
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De Moivre’s Formula

• Show that z1z2 = r1r2e
i(θ1+θ2).

• Show that zn = rneinθ

• Show that (a+ b)n =
∑n

k=0
n!

k!(n−k)!a
kbn−k.

• Show that cosnθ =
∑2k≤n

k=0
(−1)kn!

(2k)!(n−2k)!
cosn−2k θ sin2k θ.

• Show that

sinnθ =
∑2k+1≤n

k=0
(−1)kn!

(2k+1)!(n−2k−1)!
cosn−2k−1 θ sin2k+1 θ.

• Prove the De Moivre’s Formula

einθ = (eiθ)n = (cos θ + i sin θ)n.
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Problem 6.1.6

• Show that
∑N−1

n=0 ar
n−1 = a(1−rN )

1−r .

• Show that

N−1∑
n=0

(eiθ)n =
1− eiNθ

1− eiθ
= ei

(N−1)θ
2 × ei

Nθ
2 − e−iNθ

2

ei
θ
2 − e−i θ

2

= ei
(N−1)θ

2 ×
sin Nθ

2

sin θ
2

• Show that
∑N−1

n=0 cosnθ = cos (N−1)θ
2
× sin Nθ

2

sin θ
2

• Show that
∑N−1

n=0 sinnθ = sin (N−1)θ
2
× sin Nθ

2

sin θ
2
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Single-slit diffraction

E =
1

N

N∑
k=1

Ek → E0 sinωt if θ = 0

Ek =
E0

N
sin

(
ωt+

2πa sin θ

λ

k

N

)
= E0Im ei(ωt+

2πa sin θ
λ

k
N )

E =
E0

N
Im

N∑
k=1

ei(ωt+
2πa sin θ

λ
k
N )

=
E0

N
Im

[
eiωt

N∑
k=1

(
ei

2π sin θ
λ

· a
N

)k]
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=
E0

N
Im

[
eiωt

1− ei 2πa sin θ
λ

1− ei 2π
λ
·a sin θ

N

]

=
E0

N
Im

[
eiωt

ei
πa sin θ

λ

ei
π
λ
·a sin θ

N

sin
(
πa sin θ
λ

)
sin

(
πa sin θ
λN

)]

=
E0

N

sin
(
πa sin θ
λ

)
sin

(
πa sin θ
λN

)Imei(ωt+
πa sin θ

λ
N−1

N )

lim
N→∞

E = E0 ×
sinα

α
× sin

(
ωt+

πa sin θ

λ

)
, α =

πa sin θ

λ

I

Im
=

E2|avg

E2
0 |avg

=

(
sinα

α

)2
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Assumimg |p| < 1 show the following formulas.

•
∑∞

n=0 p
n cosnθ = Re

∑∞
n=0 p

neinθ.

•
∑∞

n=0 p
n sinnθ = Im

∑∞
n=0 p

neinθ.

•
∑∞

n=0 p
neinθ = 1

1−peinθ .

• Re 1
1−peinθ = 1−p cos θ

1−2p cos θ+p2
.

• Im 1
1−peinθ = p sin θ

1−2p cos θ+p2
.

•
∑∞

n=0 p
n cosnθ = 1−p cos θ

1−2p cos θ+p2
.

•
∑∞

n=0 p
n sinnθ = p sin θ

1−2p cos θ+p2
.
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Prove the following formulas.

• ez = ex+iy = exeiy = ex(cos y + i sin y).

• e−z = e−xe−iy = e−x(cos y − i sin y).

• eiz = ei(x+iy) = e−yeix = e−y(cosx+ i sin x).

• e−iz = e−i(x+iy) = eye−ix = ey(cosx− i sinx).

• cos iz = ei(iz)+e−i(iz)

2
= cosh z.

• sin iz = ei(iz)−e−i(iz)

2i
= i sinh z.

• cosh iz = e(iz)+e−(iz)

2
= cos z.

• sinh iz = e(iz)−e−(iz)

2
= i sin z.
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Prove the following formulas.

• sin(x+ iy) = sin x cosh y + i cosx sinh y.

• cos(x+ iy) = cosx cosh y − i sin x sinh y.

• cosh2 y − sinh2 y = 1.

• | sin(x+ iy)|2 = sin2 x+ sinh2 y.

• | cos(x+ iy)|2 = cos2 x+ sinh2 y.

• ∀x ∈ R sin2 x ≤ 1.

• ∀x | sin(x+ iy)|2 ≥ 1 if |y| > ln(1 +
√

2).

• | sin z| ≥ | sinx|.

• | cos z| ≥ | cosx|.
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Prove the following formulas.

• sinh(x+ iy) = sinhx cos y + i coshx sin y.

• cosh(x+ iy) = coshx cos y + i sin x sinh y.

• | sinh(x+ iy)|2 = sinh2 x+ sin2 y.

• | cosh(x+ iy)|2 = cosh2 x+ cos2 y.
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Prove the following formulas.

• sin θ = 2 sin θ
2
cos θ

2
.

• cos θ = 1− 2 sin2 θ
2

= 2 cos2 θ
2
− 1.

• tan θ
2

= 1−cos θ
sin θ

.

• tan2 θ
2

= 1−cos θ
1+cos θ

.

• sinh x = 2 sinh x
2
cosh x

2
.

• coshx = 2 sinh2 x
2

+ 1 = 2 cosh2 x
2
− 1.

• tanh x
2

= coshx−1
sinhx

.

• tanh2 x
2

= coshx−1
coshx+1

.
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Prove the following formulas.

• |(cosh z)± 1|2 = (cosh x cos y ± 1)2 + (sinhx sin y)2 =

(coshx± cos y)2.

• [(cosh z)± 1][(cosh z)∓ 1]∗ = (sinh x∓ i sin y)2.

• tanh2 z
2

=
(

sinhx+i sin y
coshx+cos y

)2

.

• coth2 z
2

=
(

sinhx−i sin y
coshx−cos y

)2

.
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Square root Solve z2 = ReiΘ

z = reiθ

z2 = r2einθ = Rei(Θ+2kπ)

r =
√
R

θ =
Θ

2
,

Θ

2
+ π

z1 =
√
Rei

Θ
2 , z2 =

√
Rei(

Θ
2

+π)

• Solve z2 = 1.

• Solve z2 = −1.

• Solve z2 = i.
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N -th root

Solve zn = ReiΘ

z = reiθ

zn = rneinθ = Rei(Θ+2kπ)

r = R1/n

θ =
Θ + 2kπ

n
, k = 0, 1, · · · , n− 1

• Solve z3 = 1.

• Solve z4 = −1.

• Solve z5 = i.
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Logarithm

ln z = ln
[
rei(θ+2nπ)

]
= ln r + i(θ + 2nπ)→ multi− valued

cut (θ0 − π < θ < θ0 + π) is needed

= ln r → principal value

eln z = eln[re
i(θ+2nπ)]

= eln r+i(θ+2nπ)

= eln rei(θ+2nπ)

= reiθ = z
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Cauchy-Riemann condition If f(z) is differentiable

f ′(z) =
df

dz
= lim

δz→0

f(z + δz)− f(z)

δz

=
∂f

∂x
= lim

δx→0

f(z + δx)− f(z)

δx

=
∂f

∂(iy)
= lim

δy→0

f(z + iδy)− f(z)

iδy

What happens if
∂f

∂x
6= ∂f

∂(iy)
?
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Laplace equation and Harmonic function: Consider a

differentiable function f(z);

f(z) = u(z) + iv(z), fa ≡
∂f

∂a

• Show that ux = vy, uy = −vx.

• Show that uxx = vyx = vxy = −uyy → ∇2u = 0

• vyy = uxy = vyx = −vxx → ∇2v = 0

• u and v are harmonic functions; solutions to 2-d

Laplace equation; potential function.

• Show that the two 2-dimensional vectors (ux, vy) and (uy, vx)

are orthogonal; uxuy + vxvy = 0.
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Analytic function: A function is analytic at z = z0; If the

function is differentiable at z = z0 and in some small region

around z0. Entire function: Analytic everywhere.

• Show that f(z) = z is analytic. (u = x, v = y)

• Show that f(z) = Re(z) is not analytic. (u = x, v = 0)

• Show that f(z) = Im(z) is not analytic. (u = 0, v = y)

• Show that f(z) = z∗ is not analytic. (u = x, v = −y)

• Show that f(z) = z2 is analytic. (u = x2 − y2, v = 2xy)

• Show that f(z) = |z|2 = zz∗ is not analytic.

(u = x2 + y2, v = 0)
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• f(z) = u+ iv and g(z) = u′ + iv′ are analytic. Using

Cauchy-Rieman conditions for f(z) and g(z), show that

h(z) = f(z) + g(z) = U + iV is also analytic.

(U = u+ u′, V = v + v′)

• f(z) = u+ iv and g(z) = u′ + iv′ are analytic. Using

Cauchy-Rieman conditions for f(z) and g(z), show that

h(z) = f(z)g(z) = U + iV is also analytic.

(U = uu′ − vv′, V = uv′ + vu′)

• Using above result, show that [f(z)]n is analytic if f(z) is

analytic.

• Show that zn is analytic.
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Constant electric field along the x-axis

Φ(z) = φ(z) + iψ(z) = −E0z

E = −∇φ = −φxx̂− φyŷ, ∇2φ = −∇ ·E = 0

Ex = −φx, Ey = −φy

dΦ(z)

dz
= −E0

= φx + iψx = φx − iφy = −Ex + iEy

Ex = −Re
dΦ(z)

dz
= E0

Ey = +Im
dΦ(z)

dz
= 0
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E field along a long charged wire∮
E · dA =

Q

ε0

← Q = λL

E =
λ

2πε0

r

r2
, Ex =

λ

2πε0

x

r2
, Ey =

λ

2πε0

y

r2

dΦ(z)

dz
= −Ex + iEy =

λ

2πε0

−z∗

|z|2
= − λ

2πε0

1

z

Φ(z) = − λ

2πε0

∫
dz

z
= − λ

2πε0

ln z

= − λ

2πε0

(ln r + iθ)

φ = ReΦ = − λ

2πε0

ln r

78



B field around a long wire

Φ(z) = φ(z) + iψ(z) = φ+ iA(z)

B = ∇×A = x̂Bx + ŷBy, A = ẑA(x, y)

∇ ·B = 0 = ∇(∇ · A)−∇2A = 0→ ∇2A = 0

Bx =
∂A

∂y
= −µ0I

2π

y

r2
, By = −∂A

∂x
=
µ0I

2π

x

r2

dΦ(z)

dz
=

∂A

∂y
+ i

∂A

∂x
= Bx − iBy

=
µ0I

2π

(−y − ix)
r2

= −iµ0I

2π

x− iy
r2

= −i µ0I

2πz

Φ = −iµ0I

2π
ln z, A = ImΦ = −µ0I

2π
ln r
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A stupid way to show that zn is analytic

zn = (x+ iy)n = u+ iv

u =

2k≤n∑
k=0

(−1)kn!

(2k)!(n− 2k)!
xn−2ky2k

v =

2k+1≤n∑
k=0

(−1)kn!

(2k + 1)!(n− 2k − 1)!
xn−2k−1y2k+1

ux = vy =

2k+1≤n∑
k=0

(−1)kn!

(2k)!(n− 2k − 1)!
xn−2k−1y2k

uy = −vx =

2k≤n∑
k=0

(−1)kn!

(2k − 1)!(n− 2k)!
xn−2ky2k−1
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z∗ is NOT differentiable

z∗ = x− iy = u+ iv → u = x, v = −y
ux = 1 6= vy = −1, uy = −vx = 0
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1/z

1

z
=

z∗

|z|2
= u+ iv, u =

x

x2 + y2
, v = − y

x2 + y2

ux =
−2x2

(x2 + y2)2
+

1

x2 + y2
=

y2 − x2

(x2 + y2)2

vy =
2y2

(x2 + y2)2
− 1

x2 + y2
=

y2 − x2

(x2 + y2)2
→ ux = vy

uy =
−2xy

(x2 + y2)2

vx =
2xy

(x2 + y2)2
→ uy = −vx

However, the fuction is not defined at z = 0.
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Elementary functions Explain why the following functions are

analytic and prove the equalities.

zn = differentiable

ez =
∞∑
k=0

zn

n!

sin z =
∞∑
k=0

(−1)n
z2n+1

(2n+ 1)!

cos z =
∞∑
k=0

(−1)n
z2n

(2n)!

ln(1 + z) =
∞∑
k=0

(−1)n
zn

n
, |z| < 1
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Prove

d

dz
zn = nzn−1

d

dz
ez = ez

d

dz
sin z = cos z

d

dz
cos z = − sin z

d

dz
ln(1 + z) =

1

1 + z
, |z| < 1
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Homework set 2: (due: Sep. 25, 2004)

1. (6.1.14) Find all the zeros of (a) sin z, (b) cos z,

(c) sinh z, (d) cosh z.

2. (6.1.15) Show that

(a) sin−1 z = −i ln
(
iz ±

√
1− z2

)
(b) sinh−1 z = ln

(
z ±
√
z2 + 1

)
(c) cos−1 z = −i ln

(
iz ±

√
1− z2

)
(d) cosh−1 z = ln

(
z ±
√
z2 − 1

)
(e) tan−1 z = i

2
ln

(
i+z
i−z

)
(f) tanh−1 z = 1

2
ln

(
1+z
1−z

)
.

3. (6.1.20) Show that
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(a) eln z always equals z.

(b) ln ez does not always equals z.

4. (6.2.3) Having shown that the real part u(x, y) and the

imaginary part v(x, y) of an analytic function w(z) each

satisfy Laplace’s equation, show that u(x, y) and v(x, y)

cannot both have either a maximum or a minimum in the

interior of any region in which w(x, y) is analytic. They can

have saddle points.

5. (6.2.4) Let A = wxx, B = wxy, and C = wyy. From the

calculus of functions of two variables, w(x, y), we have a

saddle point if B2 − AC > 0. With f(z) = u(x, y) + iv(x, y),

apply the Cauchy-Riemann conditions and show that both
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u(x, y) and v(x, y) do not have a maximum or a minimum in a

finite region of the complex plain.

6. (6.2.7) The function f(z) = u(x, y) + iv(x, y) is analytic. Show

that [f(z∗)]∗ is also analytic.

7. (6.2.8) A proof of the Schwarz inequality involves minimizing

an expression

f = ψaa + λ∗ψab + λψ∗ab + λψbb ≥ 0.

The ψ are integrals of products of functions; ψaa and ψbb are

real, ψab is complex, and λ is a complex parameter.

• Differentiate the preceding expression with respect to λ∗,

treating λ as an independent parameter, independent of λ∗.

Show that setting the derivative ∂f/∂λ∗ equal to zero
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yields λ = −ψ∗ab/ψbb.
• Show that ∂f/∂λ = 0 leads to the same result.

• Let λ = x+ iy, λ∗ = x− iy. Set the x and y derivatives

equal to zero and show that again λ = −ψ∗ab/ψbb.
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6.3 Cauchy’s Integral Theorem

Integral exists if its value is independent of the path∫ z2

z1

dzf(z) =

∫ x2+iy2

x1+iy1

[u+ iv][dx+ idy]

=

∫ x2+iy2

x1+iy1

[udx− vdy]

+ i

∫ x2+iy2

x1+iy1

[vdx+ udy]

= F (z2)− F (z1)
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Cauchy integral for powers: Consider a path C on a circle of

radius r, where the center is the origin. We integrate zn over the

circle from z = r through z = rei2π.

• Show that the point on the path is z = reiθ, and dz = ireiθdθ,

where the θ is the polar angle.

• Show that
∫
C
zn dz = 0 ∀ integer n 6= 1.

• Show that
∫
C
dz
z

= 2πi.

• Show that
∫
C

dz
z−z0 = 0 ∀z0 such that |z − z0| > r.

• Show that
∫
C
dz(z− z0)

n = 0 ∀n and ∀z0 such that |z− z0| > r.
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If |z| > 0, zn is analytic for any integer n

C : circle of radius r, z = reiθ, dz = ireiθdθ

n 6= −1∫
C

dzzn dz = irn+1

∫ 2π

0

ei(n+1)θdθ =
rn+1

n+ 1

[
ei(n+1)2π − 1

]
=

[
zn+1

n+ 1

]re2πi

r

= 0

∫
C

dz

z
dz = i

∫ 2π

0

dθ = 2πi

= ln(re2πi)− ln r = 2πi
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• Show that
∫ x2

x1
f(x)dx = −

∫ x1

x2
f(x)dx.

• Show that
∫ x2

x1
f(x, y)dx = −

∫ x1

x2
f(x, y)dx.

• Show that
∫ z2
z1
f(z)dz = −

∫ z1
z2
f(z)dz. Hint: Rewrite the

integral in terms of the integrals of real variables x and y.

• For any contour encircling z = 0 once counterclockwise,
1

2πi

∮
zm−n−1 dz = δmn, for integers m,n
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Cauchy’s integral theorem

If f(z) is analytic and its partial derivatives are continuous

throughout some simply connected region R, for every closed path

C in R the integral of f(z) around C vanishes or∮
C

f(z) dz = 0
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Proof using Stoke’s theorem

V = x̂Vx + ŷVy∮
C

V · ds =

∫
A

∇× V · dA∮
C

(Vxdx+ Vydy) =

∫
A

(
∂Vy
∂x
− ∂Vx

∂y

)
dx dy

if (Vx, Vy) = (u,−v),
∮
C

(udx− vdy) = −
∫
A

(vx + uy)dx dy

if (Vx, Vy) = (v, u),

∮
C

(vdx+ udy) =

∫
A

(ux − vy)dx dy
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It’s like a conservative force

∮
C

f(z)dz =

∮
C

(udx− vdy) + i

∮
(udy + vdx)

=

∫
A

[−(vx + uy) + i(ux − vy)] dx dy = 0

← Cauchy − Riemann condition← analytic∮
C

f(z)dz =

∫ z2

z1

f(z)dz +

∫ z1

z2

f(z)dz

= 0∫ z2

z1

f(z)dz = F (z2)− F (z1)

F (z) is like a potential
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Simply connected region We take a contour C. If f(z) is

analytic ∀z ∈ R such that C = ∂R, where ∂R is the boundary of

R, R is simply connected. For all C ′ ⊂ R,∮
C
f(z)dz =

∮
C′ f(z)dz = 0

Multiply connected region f(z) is analytic in R. If there is a

path C ⊂ R such that the region surouded by the C contains a

region R′, where f(z) is not analytic, the region R is multiply

connected.
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Application Consider a contour C and C ′ which encircle the

same region R′ and C 6⊂ R′ and C ′ 6⊂ R′, where f(z) is not

analytic in R′ and f(z) is analytic in (R′)c. Choose two very close

points A,B ∈ C and A′, B′ ∈ C and draw paths L from A to B

and L′ from A′ to B′. Let L and L′ approaches arbitrarily closely

and L ∩ L′ = ∅.

• Show that
∫
AB

f(z)dz → 0 and
∫
A′B′ f(z)dz → 0.

• Show that
∮
C
f(z)dz =

∮
C−AB f(z)dz and∮

C′ f(z)dz =
∮
C′−A′B′ f(z)dz.

• Show that
∮
AA′ f(z)dz =

∮
B′B

f(z)dz = 0.

• Draw a closed path in a simply connected region combining

open curves passing A,B,A′, B′ along C − AB, C ′ − A′B′, L,

and L′ → −L.
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∮
C+C′+L−L

f(z)dz =

[∫
C

+

∫
−C′

+

∫
L

+

∫
−L

]
f(z)dz = 0∫

C

f(z)dz −
∫
C′
f(z)dz +

∫
L

f(z)dz −
∫
L

f(z)dz = 0∮
C

f(z)dz =

∮
C′
f(z)dz
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6.4 Cauchy’s integral formula

If f(z) is analytic in R within a boundary contour C

1

2πi

∮
C

f(z)

z − z0

dz =

 f(z0)← if z0 is enclosed by C.

0← if z0 is not enclosed by C.

• Show that 1
z2+1

is analytic inside ∀C which is parametrized as

C = {z = reiθ | r < 1}. Therefore the region inside C is

simply connected.

• Show that
∮
C

1
z2+1

= 0 ∀C which is parametrized as

C = {z = reiθ | r < 1}.
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If f(z) is analytic in R within a boundary contour C

1

2πi

∮
C1

f(z)

z − z0

dz = 0← f(z)

z − z0

is analytic inside C1

1

2πi

∮
C2

f(z)

z − z0

dz =

∮
z=z0+reiθ

f(z)

z − z0

dz

=
1

2πi
lim
r→0

∫
f(z0 + reiθ)

reiθ
reiθidθ

=
1

2πi
lim
r→0

f(z0)

∫ 2π

0

idθ = f(z0)
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n-th Derivatives If f(z) is analytic in R within a boundary

contour C = ∂R. ∀w such that w ∈ R and w /∈ C show that

f(w) =
1

2πi

∮
C

f(z)

z − w
dz.

f ′(w) ≡ lim
δ→0

f(w + δ)− f(w)

δ

= lim
δ→0

1

2πiδ

[∮
C

f(z)

z − (w + δ)
dz −

∮
C

f(z)

z − w
dz

]
= lim

δ→0

1

2πi

∮
C

f(z)

[z − (w + δ)][z − w]
dz

=
1

2πi

∮
C

f(z)

(z − w)2
dz.
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f(z) is analytic on and within a closed contour C.

• Show that ∮
C

f ′(z)

z − z0

dz = 2πif ′′(z0).

• Show that

f ′′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz ∀z0 enclosed by C.

• Therefore∮
C

f ′(z)

z − z0

dz =

∮
C

f(z)

(z − z0)2
dz ∀z0 enclosed by C.
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n-th Derivatives f(z) is analytic on and within a closed contour

C. f (n) is the n−th derivative of f(z).

• Check if
0!

2πi

∮
C

f(z)

(z − z0)1
dz = f(z0).

• Assume
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz = f (n)(z0).

• Show that

(n+ 1)!

2πi

∮
C

f(z)

(z − z0)n+2
dz = f (n+1)(z0).
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• Hint: Show that

f (n+1)(z0) = lim
δ→0

f (n)(z0 + δ)− f (n)(z0)

δ

and use

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz.

You must know (1/zn)′ = −n/zn+1 for z 6= 0.

• Therefore, by mathematical induction, ∀n ≥ 0

n!

2πi

∮
C

f(z)

(z − z0)n+1
dz = f (n)(z0).
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6.4.7 Legendre polynomial Now we know that for any analytic

function f(z) within the contour C surrounding z0

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz

Show that Legendre’s polynomial Pn(x) is expressed as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n =

(−1)n

2nn!

n!

2πi

∮
C

(1− z2)n

(z − x)n+1
dz

=
(−1)n

2n
· 1

2πi

∮
C

(1− z2)n

(z − x)n+1
dz

where the contour encloses x once in a positive sense. This is

called Schläfli’s integral representation for the Pn(x).
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Legendre’s integral representation Choose the contour C as a

cicle around x with radius
√

1− x2 so that z = x+ ieiφ
√

1− x2,

where 0 < φ < 2π. Show that

• dz = −
√

1− x2eiφdφ = i(z − x)dφ.

• z2 − 1 = 2(z − x)
(
x+ i

√
1− x2 cosφ

)
.

Pn(x) =
1

2n · 2πi

∮
C

(z2 − 1)n

(z − x)n+1
dz

=
1

2π

∫ 2π

0

(x+ i
√

1− x2 cosφ)ndφ,

Pn(cos θ) =
1

π

∫ π

0

(cos θ + i sin θ cosφ)ndφ.

This is called Legendre’s integral representation for the Pn(x).
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Generating function for the Legendre’s polynomial Change

the integration variable into t = cos θ + i sin θ cosφ.

• Show that t runs from e−iθ to eiθ and

dφ =
dt

i sin θ cos θ
=

dt

i
√
t2 − 2t cos θ + 1

• Show that

Pn(cos θ) =
1

πi

∫ eiθ

e−iθ

dz
zn√

z2 − 2z cos θ + 1
.

• Next We will show that

g(t, cos θ) ≡ 1√
t2 − 2t cos θ + 1

=
∞∑
n=0

tnPn(cos θ).

This is called Legendre’s integral representation for the Pn(x).
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Consider −1 < x < 1, 0 < t < 1, and z ∈ C = {eiθ | 0 ≤ θ < 2π}
so that C encloses x

• Show that the three points −1, z, 1 make a right triangle and

the area is |1− z2|/2 = Im(z).

• Show that |z − x| ≥ Im(z) and therefore
∣∣∣ t(z2−1)

2(z−x)

∣∣∣ < 1.

• Using Pn(x) = 1
2n·2πi

∮
C

(z2−1)n

(z−x)n+1dz and above results, show that

the following infinite series is convergent as

∞∑
n=0

tnPn(x) = − 1

tπi

∮
C

dz

(z − z+)(z − z−)
.

where z± = 1
t

(
1±
√

1− 2xt+ t2
)
.
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• Show that only z− is within the contour and the integral

becomes

g(t, x) =
∞∑
n=0

tnPn(x) =
1√

1− 2xt+ t2
.

We have derived the closed form of the generating function for

Legendre’s polynomials.
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Homework set 3: (due: Oct. 9, 2004)

1. Using the Schwarz inequality to prove
∣∣∫
C
f(z)dz

∣∣ ≤ |fmax|L,

where |f(z)| ≤ |fmax| ∀z ∈ C and L is the length of the path

C. We will make use of this result frequently.

2. We learned that z∗ is not analytic. We will find the integral of

z∗ may depend on the path. Show that
∫ 1+i

0
z∗dz depends on

the path. a) Integrate along C1 = t and then C2 = 1 + it,

where 0 < t < 1. b) Integrate along C1 = it and then

C2 = t+ i, where 0 < t < 1.

3. a) Show that
∮
C

dz
z(1+z)

= 0 if C is z = reiθ, 0 < θ < 2π and

r < 1. b) Show that
∮
C

dz
z(1+z)

= 2πi if C is

z = reiθ, 0 < θ < 2π and r < 1.
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4. Show that

a) Pn(x) = 1
2``!

d`

dx` (x
2 − 1)` is the solution to the Legendre’s

differential equation

d

dx

[
(1− x2)

d

dx
P`(x)

]
+ `(`+ 1)P`(x) = 0.

b) Replacing x = cos θ, show that the Legendre’s equation is

equivalent to

− 1

sin θ

d

dθ

[
sin θ

d

dθ
P`(cos θ)

]
= `(`+ 1)P`(cos θ).
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c) Show that in the spherical coordinate system

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
,

Lz = −i ∂
∂φ
,

L2 = − 1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
− 1

sin2 θ

∂

∂φ2
.

and Pn(cos θ) is the eigenfunction for the orbital angular

momentum j = ` and jz = 0.

5. Prove Morera’s Theorem: If a function f(z) is continuous in a

simply connected region R and
∮
C
f(z)dz = 0 ∀ closed contour

C within R, then f(z) is analytic throughout R.

6. Prove Cauchy’s inequality: If f(z) =
∑∞

n=0 anz
n is analytic
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and bounded, |f(z)| ≤M on a circle of radius r about the

origin, then

|an|rn ≤M

gives upper bounds for the coefficients of its Taylor series

expansion.

7. Prove Liouville’s theorem: If f(z) is analytic and bounded in

the complex plain, it is a constant function.

8. Using Liouville’s theorem, prove the fundamental theorem of

algebra: Any poplynomial P (z) =
∑n

k=0 akz
k with n > 0 and

an 6= 0 has n roots.
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6.3 Laurent Expansion

Taylor Expansion If f(z) is analytic inside the contour C

f(z) =
1

2πi

∮
C

f(w)dw

w − z
=

1

2πi

∮
C

f(w)dw

(w − z0)− (z − z0)

=
1

2πi

∮
C

f(w)dw

(w − z0)
[
1− z−z0

w−z0

]
=

1

2πi

∮
C

f(w)

(w − z0)

∞∑
n=0

(
z − z0

w − z0

)n

dw

=
∞∑
n=0

(z − z0)
n 1

2πi

∮
C

f(w)dw

(w − z0)n+1

=
∞∑
n=0

(z − z0)
n

n!
f (n)(z0)
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• Show that ln(1 + z) = −
∑∞

n=1(−1)n z
n

n
.

• Show that ∀m ∈ R and |z| < 1,

(1 + z)m = 1 +mz +
m(m− 1)

2 · 1
z2 +

m(m− 1)(m− 2)

3 · 2 · 1
z2 + · · ·

=
∞∑
n=0

 m

n

 zn,

where

 m

n

 is m!(m−n)!
n!

generalized into the real numbers.
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Schwarz reflection principle

• Consider a complex function g(z) = (z − x0)
n, where x0 and n

are real numbers. Using binominal expansion generalized to

real powers, show that [g(z)]∗ = (z∗ − x0)
n = g(z∗).

• Consider a function which is analytic around x0 ∈ R. Show

that the Talyor expansion near the point

f(z) =
∑∞

n=0(z − x0)
nf (n)(x0)/n! exists.

• Show that if the function is real if z is real, then f (n)(x0) is

real ∀n and, therefore, [f(z)]∗ = f(z∗).
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Using Schwarz reflection principle,

• Show that [ez]∗ = ez
∗
.

• Show that [sin z]∗ = sin(z∗).

• Show that [ln(1 + z)]∗ = ln(1 + z∗).
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Analytic continuation (1 + z)−1 is NOT analytic at z = −1.

• Show that the series expansion

(1 + z)−1 =
∑∞

n=0(−z)n = 1− z + z2 − z3 + · · · converges for

|z| < 1. Hint: Calculate
∑N

n=0(−1)nzn and take limit n→∞.

• Above expansion is around z = 0. We know the function is

analytic ∀z 6= −1. Let us expand the function around z0 6= −1

as well as z0 6= 0.

1

1 + z
=

1

(1 + z0) + (z − z0)
=

1

(1 + z0)
[
1 + z−z0

1+z0

]
=

1

1 + z0

∞∑
n=0

(
−z − z0

1 + z0

)n

• Show the series converges if |z − z0| < |1 + z0|.
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Laurent expansion Even if f(z) is singular at z0, we can expand

f(z) in terms of (z− z0)
n in an analytic region between C1 and C2,

where f(z) is not analytic in R′ such that z0 ∈ R′ and C2 encloses

R′. A larger contour C1 encloses both R′ and C2. If f(z) is

analytic in the region R between C1 and C2.

f(z) =
∞∑

n=−∞

an(z − z0)
n.

The series is called Laurent series. Let us derive the explicit form

of the series.
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derivation Let us evaluate the integral S1 along the larger closed

contour C1. We choose w ∈ C1 and z ∈ R so that

|w − z0| > |z − z0| → |z−z0|
|w−z0| < 1. Show that the integral is

expressed as a convergent power series;

S1 =
1

2πi

∮
C1

f(w)dw

w − z
=

1

2πi

∮
C

f(w)dw

(w − z0)− (z − z0)

=
1

2πi

∮
C

f(w)dw

(w − z0)
[
1− z−z0

w−z0

]
=

1

2πi

∮
C

f(w)

(w − z0)

∞∑
n=0

(
z − z0

w − z0

)n

dw

=
∞∑
n=0

(z − z0)
n 1

2πi

∮
C

f(w)dw

(w − z0)n+1
.
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Next, we evaluate the integral S2 along the smaller closed contour

C2. We choose w ∈ C2 and z ∈ R so that

|z − z0| > |w − z0| → |w−z0|
|z−z0| < 1. Show that the integral is

expressed as a convergent power series;

S2 =
1

2πi

∮
C2

f(w)dw

z − w
=

1

2πi

∮
C

f(w)dw

(z − z0)− (w − z0)

=
1

2πi

∮
C

f(w)dw

(z − z0)
[
1− w−z0

z−z0

]
=

1

2πi

∞∑
n=0

∮
C

(w − z0)
n−1

(z − z0)n+1
f(w)dw

=
−∞∑
n=−1

(z − z0)
n 1

2πi

∮
C

f(w)dw

(w − z0)n+1
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• Show that the sum S1 − S2 is the contour integral surrounding

a simply connected region including z. Thus

f(z) = S1 − S2 =
1

2πi

[∮
C1

f(w)dw

w − z
−

∮
C2

f(w)dw

w − z

]
.

• Therefore,

f(z) =
∞∑

n=−∞

(z − z0)
n 1

2πi

∮
C

f(w)dw

(w − z0)n+1
,

where the contour C is again enclosing multiply connected

region including z0 and between C1 and C2.
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Example 6.5.1: The function 1/[z(1− z)] is not analytic at both

z = 0 and z = 1. But the function is analytic elsewhere such as

0 < |z| < 1. We want to find the Laurent expansion, for example,

around z = 0:

f(z) =
1

z(1− z)
=

∞∑
n=−∞

an(z − 0)n
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Choosing the contour C = {w | 0 < |w| < 1},

an =
1

2πi

∮
C

1

w(1− w)

dw

(w − 0)n+1
=

1

2πi

∮
C

dw

wn+2(1− w)

=
∞∑
k=0

1

2πi

∮
C

wk
dw

wn+2
=

∞∑
k=0

1

2πi

∮
C

dw

w(n+1−k)+1

=
∞∑
k=0

δn+1,k =

 1 if n ≥ −1

0 if n < −1

f(z) =
1

z
+ 1 + z + z2 + · · ·
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Taylor or Laurent

f(z) =
1

1− z

for |z| < 1

f(z) = 1 + z + z2 + z3 + · · · =
∞∑
n=0

zn

for |z| > 1

f(z) =
1

1− z
=

1
z

1
z
− 1

= −1

z

(
1

1− 1
z

)
= −1

z

∞∑
n=0

1

zn
= −

∞∑
n=1

1

zn
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Series expansion examples

ez =
∞∑
n=0

zn

n!
for all z

f(z) =
ez

z
← around z = 0

=
1

z

∞∑
n=0

zn

n!
=

1

z
+ 1 +

z

2!
+
z2

3!
+ · · · for all z 6= 0

f(z) = e
1
z ← around z =∞

=
∞∑
n=0

1

n!zn
= 1 +

1

z
+

1

2!z2
+ · · · for all z 6= 0
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Example 6.5.2: Let us find the Laurent series of the function

eze1/z =
∑∞

n=−∞ anz
n.

• Show that ez =
∑∞

n=0
zn

n!
and e1/z =

∑∞
m=0

1
n!zm .

• Show that f(z) is analytic except for z = 0 and z →∞.

• Using f(z) = f(1/z), show that a−n = an.

• Show that a0 is finite and a0 =
∑∞

n=0
1

(n!)2
.

• Show that ak is finite and ak = a−k =
∑∞

n=0
1

n!(n+k)!
.

• eze1/z =
∑∞

n=0

[
1

(n!)2
+

∑∞
k=1

1
n!(n+k)!

(
zk + 1

zk

)]
.
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6.6 Mapping Consider a complex function

f(z) = w = u(x, y) + iv(x, y), z = x+ iy = reiθ.

z0 = x0 + iy0 = r0e
iθ0 .

• Show that the transform w = z + z0 translates any geometrical

object in z-space by z0.

• Show that under the transformation w = z0z a circle of radius

r in z−space is transformed into a circle with radius |z0|r and

the phase is shifted by θ0.

• Show that w = 1
z

= 1
r
· ei(−θ).

• Show that under the transformation w = 1/z a disc of radius r

in z−space is transformed into the outside of a disc with

radius 1/r.
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Inversion: Consider the inversion

w = u+ iv = 1
z
, z = x+ iy = reiθ.

• Show that if x2 + y2 = r2, then u2 + v2 = (1/r)2.

• Using u = x/r2 and u2 + v2 = 1/r2, show that a vertical lint

x = x0 transforms into a cicle(
u− 1

2x0

)2

+ v2 =

(
1

2x0

)2

.

• Using v = −y/r2 and u2 + v2 = 1/r2, show that a horizontal

line y = y0 transforms into a cicle

u2 +

(
v +

1

2y0

)2

=

(
1

2y0

)2

.
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Using z = reiθ, show the following

• Show that a circle |z| = r transforms into a ellipsis under

w = u+ iv = z ± 1
z
:

u+ iv =

(
r ± 1

r

)
cos θ + i

(
r ∓ 1

r

)
sin θ,

u2(
r ± 1

r

)2 +
v2(

r ∓ 1
r

)2 = 1.

• Show that into limit |z| → 1, w = z + 1
z
→ u+ i0, where

−2 < u < 2.
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f(z) = z2 : 2 → 1 Show the following properties of the

transformation f(z) = z2.

z = x+ iy = reiθ

w = ρeiφ = z2 = r2ei(2θ)

0 < θ < π → 0 < φ < 2π

π < θ < 2π → 2π < φ < 4π

z2
0 = w → (z0e

iπ)2 = w, too

z2 = (x+ iy)2 = (x2 − y2) + i(2xy)

u = x2 − y2

v = 2xy
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f(z) =
√

z : 1 → 2 Show that there are two roots of
√
z for a

single z:

z = x+ iy = rei(θ+2kπ), k = 0, 1, 2, · · ·
w = ρeiφ = z1/2 =

√
rei(θ+2kπ)/2

φ =
θ

2
,
θ

2
+ π

if 0 ≤ θ < 2π → single− valued

Therefore, the function is multivalued unless we impose a branch

cut.
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f(z) = ez : ∞ → 1

z = x+ iy = rei(θ+2kπ), k = 0, 1, 2, · · ·
w = ex+iy = exeiy

f(z + i2nπ) = f(z), n = ±1,±2, · · ·
periodic
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f(z) = lnz : 1 → ∞ Show that there are infinitely many values

of ln z for a single z:

z = x+ iy = rei(θ+2kπ), k = 0, 1, 2, · · ·
w = ln

(
rei(θ+2nπ)

)
= ln r + i2nπ, n = 0, 1, 2, · · ·

need cut;−π < θ ≤ +π

→ single− valued

Therefore, the function is multivalued unless we impose a branch

cut.
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Conformal mapping: Let us consider the mapping w = z2.

• Show that u = a and v = b, where a, b are real constants,

transforms into x2 + y2 = a and 2xy = b.

• Show that u = a and v = b are orthogonal.

• Show that the normal vector to x2 + y2 = a is

(∂u
∂x
, ∂u
∂y

) = (2x, 2y).

• Show that the normal vector to 2xy = b is ( ∂v
∂x
, ∂v
∂y

) = (2y, 2x).

• Show that the two tangent at a common point z = x+ iy are

orthogonal.

We will see any pair of orthogonal curves are mapped into

orthogonal curves if the mapping function is analytic.
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Let us consider the mapping w = f(z) = u(x, y) + iv(x, y). Choose

two curves u(x, y) = a and v(x, y) = b passing (x, y) in the z-plain,

where a and b are real constants.

• Show that the normal vector to u(x, y) = a is (∂u
∂x
, ∂u
∂y

).

• Show that the normal vector to v(x, y) = b is ( ∂v
∂x
, ∂v
∂y

).

• Show that the inner product of the two 2-dimensional normal

vectors vanishes if f(z) is analytic.

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= −∂u

∂x

∂u

∂y
+
∂u

∂y

∂u

∂x
= 0,

due to the Cauchy-Riemann condition of analyticity.
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Consider an analytic function w = f(z). We will verify that the

mapping preserves the angle.

• Show that df(z)/dz exists and unique at a point z = z0.

• Show that arg
(
df(z)
dz

)
= α, where α is real and constant at

z = z0. Is df(z)/dz independent of the path approaching

z = z0?

• Show that arg[df(z)] =arg(dz)+arg(α).

• Choose two paths approaching z = z0, z0 + εeiθ1 and z0 + εeiθ2 ,

where θ1 and θ2 are constants and we vary ε→ 0. dz for the

two paths are eiθ1dε and eiθ2dε. The relative angle between the

two paths are θ1 − θ2. Show that the corresponding path in

the w−plain is df [z0 + εeiθ1 ]− df [z0 + εeiθ2 ] = θ1 − θ2.
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Consider a two semi-infinite plates crossing with an angle θ0 at the

ends of their plains. Choose the cylindrical coordinate system

where the edge is placed at the origin and the x−axis is placed on

the plain and is normal to the edge.

• Show that the sector 0 < θ < θ0 is transformed into a strip in

the w-plain.

• Assume the electric potential is V (θ = 0) = 0 and

V (θ = θ0) = V0.

• Use the symmetry to show that the potential at angle θ is

V (θ) = V0θ/θ0 = V0

θ0
Im(ln z).

• Show that w = U + iV = V0

θ0
ln z is analytic and Im(w) = V .

• Show that Ex = −∂V
∂x

and Ey = −∂V
∂y

.
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• Show that dw
dz

= −i(Ex − iEy) and therefore Ex = Im
(
−dw

dz

)
and Ey = Re

(
−dw

dz

)
.

• Differentiating the complex potential, find the electric field

components

−dw
dz

= − V0

zθ0

=
V0

θ0

(
− x
r2

+ i
y

r2

)
Ex =

V0

zθ0

y

r2
=
V0

θ0

sin θ

r

Ey = − V0

zθ0

x

r2
= −V0

θ0

cos θ

r
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Homework set 4: (due: Oct. 16, 2004)

1. (6.5.3) Funtion f(z) is analytic on and within the unit circle

C. Also, |f(z)| < 1 for |z| < 1 and f(0) = 0. Show that

|f(z)| < |z| for |z| ≤ 1.

2. Show that the Laurent series

eze1/z =
∑∞

n=0

[
1

(n!)2
+

∑∞
k=1

1
n!(n+k)!

(
zk + 1

zk

)]
is convergent

∀z 6= 0.

3. (6.5.8) Show that the Laurent expansion of f(z) = (ez − 1)−1

about the origin is

f(z) =
1

z

(
z

ez − 1

)
=

1

z

(
1 +

z

2
+
z2

6
+ · · ·

)−1

=
1

z
− 1

2
+

z

12
+ · · ·
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4. (6.5.11)

(a) Given f1(z) =
∫ ∞

0
e−ztdt(with real t), show that the

domain in which f1(z) exists and it analytic is Re(z) > 0.

(b) Show that f2(z) = 1/z equals f1(z) over Re(z) > 0 and is

therefore an analytic continuation of f1(z) over the entire

z-plain except for z = 0.

(c) Expand 1/z = 1/[i+ (z − i)] about the point z = i to find

1/z = −i
∑∞

n=0 i
n(z − i)n for |z − i| < 1.

5. (6.6.2) a) Show that the mapping w = z−1
z+1

transforms the

right half of the z-plain(Re(z) > 0) into the unit disc |w| < 1.

b) Show that the mapping w = z−i
z+i

transforms the upper half

of the z-plain(Im(z) < 0) into the unit disc |w| < 1.
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Mid-term Exam:

Chapter 4 and 6

Oct. 18, 2004, Monday
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Chapter 7

Complex Variable II
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• We now know many properties of analytic functions.

• We extensively use Cauchy integral theorem to evaluate many

important definite integrals.

• entire function: Functions such as z and ez are analytic

everywhere.

• singularity: Function such as 1/z has sigularity at z = 0.

The function is not analytic at the singular point. The point is

isolated because anywhere near the point the function is

analytic.

• meromorphic function: a function is meromorphic if it has

a finite number of singular points.
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Poles: A series expansion near an isolated pole can be done using

Laurent series method. Consider a Laurent series exapnsion about

z0.

f(z) =
∞∑

k=−∞

ak(z − z0)
k

= a0 +
∞∑
n=1

[
an(z − z0)

n +
a−n

(z − z0)n

]
a−n

(z − z0)n
= pole of order n

a−1 = Residue
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Essential singularity: If a series has a pole of infinite order, the

function has essential singularity at the point. e1/z as essential

singularity at z = 0. Laurent series exapnsion about |z| =∞.

e1/z =
∞∑
k=0

1

n!zn
poles at z = 0 for all n

a−n =
1

n!
, pole of any order n = 1, 2, · · · → essential singularity
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The real function sinx is bounded. However, sin z also has an

essential singularity at z →∞(1
z

= t→ 0);

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n

(2n+ 1)!t2n+1
.

Show that sin z = sinx cosh y + i cosx sinh y and that sin z is not

bounded as Im(z)→ ±∞.
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Branch cut

• Show that ln z = ln r + iθ is single valued only if we impose a

branch cut.

• Show that the cut of Rex < 0 and y = 0 is a choice and the

answer has the same limiting value as z approaches the

positive real axis. (Rex > 0 and y = 0)

• Show that z = eln z and ln ez is not always equal to z.

• Show that za = raeiaθ is multivalued unless we impose a cut.

eia2π 6= ei0

unless a = integer. The cut must pass the branch point z = 0.
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Functions with 2 branch points

(z2 − 1)1/2 = (z + 1)1/2(z − 1)1/2

if z = x, − 1 < x < 1

(z2 − 1)1/2 = i
√

1− x2, − i
√

1− x2 : double

→ branch points are z = ±1

→ need a common branch cut

z = x, − 1 < x < 1

(z2 − 1)1/2 =
√
r+r−e

i
2
(θ++θ−)

z − 1 = r+e
iθ+ , − π < θ+ < π

z + 1 = r−e
iθ− , 0 < θ− < 2π

→ −π
2
<

1

2
(θ+ + θ−) <

3π

2
→ single− valued
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Uniqueness Theorem for power series(Sec. 5.7): Assume

there are two series expansions of a function

f(x) =
∞∑
n=0

anx
n, −Ra < x < Ra

=
∞∑
n=0

bnx
n, −Rb < x < Rb

with overlapping intervals of convergence, including the origin.

• Substituting x = 0, show that a0 = b0.

• Differentiating both sides once and substituting x = 0, show

that a1 = b1. Using mathematical induction, show that

an = bn for all n. Therefore, Talyor expansion is unique.
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Consider a function f(z) having an order-n pole at z = z0. One

can expand f(z) around z = z0 in terms of Laurent series

expansion. f(z) =
∑∞

k=−n akz
k, ak = 1

2πi

∮
C

f(z)dz
(z−z0)k+1 , where the

contour C is enclosing z0.

• Show that (z − z0)
nf(z) = (z − z0)

n−1 [a−1 + o(z − z0)], where

o(0) = 0.

• Show that dn−1

dzn−1 (z − z0)
n−1 = (n− 1)! and

[
dn−1

do(z−z0)

]
z=z0

= 0.

• Show that the residue a−1 is then

a−1 =
1

(n− 1)!

dn−1

dzn−1
[(z − z0)

nf(z)]z=z0
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Residue Theorem: Assume f(z) has poles only at z = z0.

f(z) =
∞∑

n=−∞

an(z − z0)
n, a−1 = residue

∮
C

f(z)dz =

 2πia−1, z0 is inside C

0, z0 is outside C
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Assume f(z) has poles at z = z1, z2, · · · as

f(z) =
∞∑

n=−∞

[(a1)n(z − z1)
n + (ak)n(z − z2)

n + · · · ] .

• Show that
∑∞

n=−∞ an(z − zi)n is analytic for all zj 6= zi.

• Show if a contour encloses poles z1 through zm, show that∮
C

f(z)dz = 2πi [(a1)−1 + (a2)−1 + · · ·+ (ak)−1] .

153



Calulate the residues

f(z) =
1

z − i
→ Residue(z = i) = 1

f(z) =
1

z2 − 1
=

1

(z + 1)(z − 1)

a−1(z = 1) =
1

(1 + 1)
=

1

2
, a−1(z = −1) =

1

(−1− 1)
= −1

2

Find the residue of the following function at z = 0.

f(z) =
1

z2(z − 1)
→ − 1

z2
(1 + z + z2 + · · · ) = − 1

z2
− 1

z
− · · ·

Res(0) =
1

(n− 1)!

dn−1

dzn−1
[(z − z0)

nf(z)]z=z0 ← n = 2, z0 = 0

=

[
− 1

(z − 1)2

]
z=1

= −1
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Example 7.2.1: Let us evaluate the definite integral

I =

∫ 2π

0

dθ

1 + ε cos θ
, |ε| < 1

• Using the following change of varibale,

z = eiθ, dz = ieiθdθ → dθ = −idz
z

1 + ε cos θ = 1 + ε
1

2

(
z +

1

z

)
=

ε

2z

(
z2 +

2z

ε
+ 1

)
show that the integral can be expressed as a contour integral

over a unit circle as
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I =

∫ 2π

0

dθ

1 + ε cos θ
=

∮
C

(
−idz

z

)
2z

ε(z − z+)(z − z−)

=
−2i

ε

∮
C

dz

(z − z+)(z − z−)

z± = −1

ε

(
1±
√

1− ε2
)
, z+ − z− =

2

ε

√
1− ε2

• Show that |z+| < 1 and z− < −1; only z+ is enclosed by the

contour of the unit circle C.

• Show that the residue for [(z − z−)(z − z+)]−1 at z = z+ is

1

z+ − z−
=

ε

2
√

1− ε2
.
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• Finally

I =

∫ 2π

0

dθ

1 + ε cos θ
, |ε| < 1

=
−2i

ε

2πi

z+ − z−
=
−2i

ε
2πi

ε

2
√

1− ε2
=

2π√
1− ε2
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Example 7.2.2: Let us evaluate the definite integral of a real

variable

I =

∫ ∞

−∞

dx

1 + x2

using the complex contour integral technique.

• Show that I = limR→∞
∫ R

−R
dz

1+z2
, where z = x+ i0.

• Let us take a contour C made of C1, from −R + i0 to R + i0,

and C2 along Reiθ, where 0 < θ < π. Show that

J =

∫
C

dz

z2 + 1
=

∫
C

dz

(z + i)(z − i)
= I +

∫
C2

dz

z2 + 1
.

• Show that z = i is the only pole enclosed by C and its residue

is

a−1(z = i) =
1

2i
→ J = 2πi× a−1(z = i) = π.
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• Show that the integral along the large semi-circle C2 is

reduced into∫
C2

dz

z2 + 1
=

∫ 2π

θ=0

d(Reiθ)

1 + (Reiθ)2
= Rieiθ

∫ 2π

0

dθ

1 +R2e2iθ

• Using |
∫
f(z)dz| ≤ |fmax|L, where |fmax| is the maxmum value

of the |f(z)| along the path and L is the length of the path,

show that ∫
C2

dz

z2 + 1
≤ 2π

R
→ 0 as R→∞.

• Therefore ∫ ∞

−∞

dx

1 + x2
= π,

∫ ∞

0

dx

1 + x2
=
π

2
.
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Example 7.2.4: Let us evaluate the definite integral

I =

∫ ∞

−∞

sin x

x
dx = Im

∫ ∞

−∞

eiz

z
dz.

• Take the contour C = [−R + i0→ −δ + i0]

+[C1 : δeiθ, θ : π → 0] +[−R + i0→ −δ + i0]

+[C2 : Reiθ, θ : 0→ π].

• Show that the function eiz/z is analytic in the region enclosed

by the contour C. Therefore,∮
C

eiz

z
dz = 0.
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• Show that in the limit δ → 0 the integral over the semi-circle

C1 becomes∫
C1

eiz

z
dz = (πi)half circle(−1)clockwise = −πi

note that the path is in the negative sense.

• Show that in the limit R→∞ the integral over the large

semi-circle C2 vanishes∣∣∣∣∫
C2

eiz

z
dz

∣∣∣∣ ≤ ∣∣∣∣i∫ π

0

eiR cos θ−R sin θdθ

∣∣∣∣← z = Reiθ,
dz

z
= idθ

=

∫ π

0

e−R sin θdθ = 2

∫ π
2

0

e−R sin θdθ

≤ 2

∫ π
2

0

e−R
2θ
π dθ =

π

R

(
1− e−R

)
→ 0 as R→ 0.
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• Show that ∮
C

eiz

z
= iπ =

∫ −δ

−R

eix

x
+

∫ R

δ

eix

x

• Show that

lim
δ→0

∫ δ

−δ

sin x

x
dx = lim

δ→0

∫ δ

−δ

x+ o(x3)

x
dx

= lim
δ→0

∫ δ

−δ

(
1 + o(x2) + · · ·

)
dx

→ lim
δ→0

[
2δ + o(δ3)

]
→ 0
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• Show that ∮
C

cos z

z
= 0,

∮
C

sin z

z
= π∫ ∞

0

sin z

z
=

∫ 0

−∞

sin z

z
=
π

2∫ ∞

−∞

sin z

z
= π
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(7.2.11): Let us use the same method to calculate the integral

I =

∫ ∞

−∞

sin2 x

x2
dx

• Show that the integral can be reparametrized as∫ ∞

−∞

sin2 x

x2
dx =

∫ ∞

−∞

1− cos 2x

2x2
dx = Re

∫ ∞

−∞

1− ei2z

2z2
dz

Residue(0) = −2i

2
= −i∫ ∞

−∞

sin2 x

x2
dx = π

∫ ∞

0

sin2 x

x2
dx =

π

2
.

This integral appears when we derive Fermi’s Golden Rule. See

time-dependent perturbation theory in quantum mechanics.
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Feynman propagator(ε→ 0+, ω0 > 0)

i∆F (t) = i

∫ ∞

−∞

dω

2π

e−iωt

ω2 − ω2
0 + iε

= i

∫ ∞

−∞

dω

2π

e−iωt

(ω − ω0 + iε)(ω + ω0 − iε)
closing C : t > 0→ clockw., t < 0→ counterclockw.

Res(ω0) =
e−iω0t

2ω0

, Res(−ω0) =
e+iω0t

−2ω0

i∆F (t) =
i(2πi)

2π

[
(−1)c.clockw.

θ(t)e−iω0t

2ω0

+ (+1)clockw.
θ(−t)eiω0t

−2ω0

]
=

1

2ω0

[
θ(t)e−iω0t + θ(−t)eiω0t

]
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Mittag-Leffler Theorem: f(z) has poles z1, · · · , zn inside Cn(center

0). |f(zn)|/Rn → 0 as Rn →∞ (bounded). z 6= zi, 0, Cn.

Res(zi) = bi.

In(z) =
1

2πi

∫
Cn

f(w)

w(w − z)
dw ← poles : zi, 0, w

=
∑

Res =
n∑

m=1

bm
zm(zm − z)

+
f(z)− f(0)

z

|In| ≤
2πRn

2π

|f(w)|max

Rn(Rn − |z|)
→ 0, as Rn →∞ (Rn � |z|)

f(z)− f(0) =
∞∑
m=1

zbm
zm(z − zm)

=
∞∑
m=1

bm

[
1

z − zm
+

1

zm

]
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Example 7.2.7 Mittag-Leffler Theorem application:

f(z) = π cotπz − 1
z

has poles z = n, n = ±1,±2 · · · .

f(0) = lim
z→0

(
π cos πz

sin πz
− 1

z

)
= 0

bn = Res(n) =

[
π cos πz

(sin πz)′

]
z=n

=
π cosnπ

π cosnπ
= 1

f(z) =
∞∑
n=1

[
1

z − n
+

1

n
+

1

z − (−n)
+

1

(−n)

]

=
∞∑
n=1

2z

z2 − n2
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Weierstrass’ Factorization Formula : f ′(z)
f(z)

, f(z) = (z − zn)g(z),
g(z) is analytic and g(zn) 6= 0. If Mittag-Leffler Theorem is
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applicable to f ′(z)
f(z)

,

f ′(z)

f(z)
=

[(z − zn)g(z)]′

(z − zn)g(z)
=

1

z − zn
+
g′(z)

g(z)

f ′(z)

f(z)
=

f ′(0)

f(0)
+

∞∑
n=1

[
1

z − zn
+

1

zn

]
(Mittag − Leffler)

ln
f(z)

f(0)
= ln f(z)− ln f(0) =

∫ f(z)

f(0)

df(w)

f(w)
=

∫ z

0

f ′(w)

f(w)
dw

=
zf ′(0)

f(0)
+

∞∑
n=1

[
ln

(
z − zn
−zn

)
+

z

zn

]

f(z) = f(0)e
zf ′(0)
f(0)

∞∏
n=1

(
1− z

zn

)
e

z
zn
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Weierstrass’ Factorization Formula Application:

f(z) = f(0)e
zf ′(0)
f(0)

∞∏
n=1

(
1− z

zn

)
e

z
zn

f(z) =
sin z

z
= 1− z2

3
+ · · · , f(0) = 1, f ′(0) = 0

sin z

z
=

∞∏
n6=0,n=−∞

(
1− z

nπ

)
e

z
nπ =

∞∏
n=1

(
1− z

nπ

) (
1 +

z

nπ

)
e

z
nπ
− z

nπ

=
∞∏
n=1

(
1− z2

n2π2

)
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Weierstrass’ Factorization Formula Application:

f(z) = f(0)e
zf ′(0)
f(0)

∞∏
n=1

(
1− z

zn

)
e

z
zn

f(z) = cos z = 1− z2

2
+ · · · , f(0) = 1, f ′(0) = 0

cos z =
∞∏
n=1

[
1− z(

n− 1
2

)
π

]
e

z

(n− 1
2)π

[
1 +

z(
n− 1

2

)
π

]
e
− z

(n− 1
2)π

=
∞∏
n=1

[
1− z2(

n− 1
2

)2
π2

]
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Example 7.2.5) Bessel funtion

g(x, t) = e
x
2 (t−

1
t ) =

∞∑
n=−∞

Jn(x)t
n

Jn(x) =
1

2πi

∮
C

e
x
2 (t−

1
t )

tn+1
dt

→ Laurent coefficient

C = reiθ, for any integer n
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Homework set 4: (due: Oct. 16, 2004)

1. (7.1.2) There is a function of the form

f(z) =
f1(z)

f2(z)
,

where fi(z)’s are analytic, f2(z0) = 0, f1(z0) 6= 0, and

f ′2(z0) 6= 0. Show that f(z) has a pole of order 1 at z = z0.

Show that the residue a−1 for the function at z = z0 is

a−1 =
f1(z0)

f ′2(z0)
.

2. Using above result show that a−1 = − i
2

at z = i if f(z) = 1
z2+1

.
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