Mathematical Physics

Jungil Lee
Department of Physics, Korea University 2004

Textbook:
Arfken and Weber, Essitial Mathematical Methods for Physicists.

Chaper 4
 Group Theory

Definition of Group G

- closure under multiplication : if $a, b \in G$, then $a b \in G$.
- multiplication is associative : $(a b) c=a(b c)$.
- $\exists 1 \in G$ such that $1 a=a 1=a \forall a \in G$.
- $\exists a^{-1} \in G$ such that $a^{-1} a=a a^{-1}=1 \forall a \in G$.

Example)

- Show that $\{1\}$ is a group.
- Show that $\{1, i,-i,-1\}$ is a group.
- Show that 1 is unique : Assume $\exists 1^{\prime} \in G$ and $1^{\prime} \neq 1$ such that $1^{\prime} a=a 1^{\prime}=a \forall a \in G$. Then you will find the assumption is wrong.

$$
\left(1^{\prime} 1=11^{\prime}=1\right) \wedge\left(1^{\prime} 1=11^{\prime}=1^{\prime}\right) \rightarrow\left(1=1^{\prime}\right)
$$

- Show that a^{-1} is unique : Assume $\exists\left(a^{-1}\right)^{\prime} \in G$ and $\left(a^{-1}\right)^{\prime} \neq a^{-1}$ such that $\left(a^{-1}\right)^{\prime} a=a\left(a^{-1}\right)^{\prime}=1 \forall a \in G$. Then you will find the assumption is wrong. $a\left(a^{-1}\right)^{\prime}=1 \rightarrow a^{-1}\left[a\left(a^{-1}\right)^{\prime}\right]=a^{-1} 1 \rightarrow\left[a^{-1} a\right]\left(a^{-1}\right)^{\prime}=a^{-1}$ $\left(a^{-1}\right)^{\prime}=a^{-1}$.

Example 1 2-Dimensional rotation

$$
\binom{x^{\prime}}{y^{\prime}}=R(\phi)\binom{x}{y}, \quad R(\phi)=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)
$$

- Show that $R(\phi)$ is orthogonal[each row(cloumn) is orthogonal to the others].
- Show that $\operatorname{Det}[R(\phi)]=+1$.
- Show that $[R(\phi)]^{-1}=[R(\phi)]^{T}=R(-\phi)$.
- Show that $G=\{R(\phi)\}$ is a group.
- Show that $G=\{R(\phi)\}$ is abelian(commutative); $R\left(\phi_{1}\right) R\left(\phi_{2}\right)=R\left(\phi_{2}\right) R\left(\phi_{1}\right)$.
- Show that G is $\mathrm{SO}(2)$; special orthogonal group (2×2).
- Subgroup is a group inside a group.
- Show that $\{R(0), R(\pi)\}$ is a subgroup in G.
- Show that $\left\{R(0), R\left(\frac{\pi}{2}\right), R(\pi), R\left(\frac{3 \pi}{2}\right)\right\}$ is a subgroup in G.

invariant subgroup

- G^{\prime} is an invariant subgroup of G if $g g^{\prime} g^{-1} \in G^{\prime} \forall g \in G$ and $\forall g^{\prime} \in G^{\prime}$.
- Show that $\{R(0), R(\pi)\}$ is an invariant subgroup in G.
- Show that $\left\{R(0), R\left(\frac{\pi}{2}\right), R(\pi), R\left(\frac{3 \pi}{2}\right)\right\}$ is an invariant subgroup in G.

Example 4.1.2) Similarity transformation $\left\{R_{x}(\phi)\right\}$, $\left\{R_{y}(\phi)\right\}$, and $\left\{R_{z}(\phi)\right\}$ are subgroups or order 2 in $\mathrm{SO}(3)$.
$R_{x}(\phi)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi\end{array}\right), \quad R_{y}(\phi)=\left(\begin{array}{ccc}\cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi\end{array}\right)$,

$$
R_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Show that $R_{x}\left(\frac{\pi}{2}\right) R_{z}(\phi)\left[R_{x}\left(\frac{\pi}{2}\right)\right]^{-1}=R_{y}(\phi)$.
- Therefore $\left\{R_{z}(\phi)\right\}$ is not an invariant subgroup.

special orthogonal group $\mathrm{SO}(\boldsymbol{n})$

- Show that $(A B)^{T}=B^{T} A^{T}$ for any matrices A and B.
- Show that $(A B)^{-1}=B^{-1} A^{-1}$ for any matrices A and B.
- Show that $O_{i}^{-1}=O_{i}^{T}$ if $\left\{O_{i}\right\}$ is a $\mathrm{SO}(\mathrm{n})$ group.
- Show that $\left(O_{1} O_{2}\right)^{-1}=\left(O_{1} O_{2}\right)^{T}$; if O_{1} and O_{2} are orthogonal, then $O_{1} O_{2}$ is also an orthogonal matrix.
- Show that real orthogonal $n \times n$ matrix has $\frac{1}{2} n(n-1)$ independent parameters.
- Show that $\mathrm{SO}(2)$ has only one independent parameter.
- Show that $\mathrm{SO}(3)$ has three independent parameters such as Euler angles.

Number of independent parameters of a group

- General linear group made of real $n \times n$ matrix, $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{n}, \boldsymbol{R})$, has n^{2} real elements. Show that There are \boldsymbol{n}^{2} independent real parameters.
- General linear group made of complex $n \times n$ matrix, $\boldsymbol{G} \boldsymbol{L}(\boldsymbol{n}, \boldsymbol{C})$, has n^{2} complex elements. Show that there are $\mathbf{2} \boldsymbol{n}^{\mathbf{2}}$ independent real parameters.
- Special linear group made of real $n \times n$ matrix with determinant $=+1, \boldsymbol{S L}(\boldsymbol{n}, \boldsymbol{R})$, has n^{2} real elements and, therefore, the determinant must be real. Show that the condition "determinant $=+1$ " eliminates one parameter. There are $\boldsymbol{n}^{2}-\mathbf{1}$ independent real parameters.
- Special linear group made of complex $n \times n$ matrix with determinant $=+1, \boldsymbol{S} \boldsymbol{L}(\boldsymbol{n}, \boldsymbol{C})$, has n^{2} complex elements and, therefore, the determinant is in general complex. Show that the condition "determinant $=+1$ " eliminates two real parameters. There are $2\left(n^{2}-1\right)$ independent real parameters.
- Show that $G L(n, C) \supset G L(n, R) \supset S L(n, R)$.
- Show that $G L(n, C) \supset S L(n, C) \supset S L(n, R)$.
- Unitary group made of complex $n \times n$ matrix $U U^{\dagger}=U^{\dagger} U=1$, $\boldsymbol{S L}(\boldsymbol{n}, \boldsymbol{C})$, has n^{2} complex elements $u_{i j}$. Show that the diagonal terms of $U U^{\dagger}=U^{\dagger} U$ are always real and equal to 1 ; n constraints. Show that the off-diagonal terms of $U U^{\dagger}=U^{\dagger} U$ are in general complex and equal to $0 ; \frac{1}{2} n(n-1) \times 2$ constraints.
- Show that $U U^{\dagger}=U^{\dagger} U=1$ generates n^{2} constraints and, therefore, we have \boldsymbol{n}^{2} independent parameters for $U(n)$.
- Show that $\operatorname{Det}(A B)=\operatorname{Det}(A) \cdot \operatorname{Det}(B)$ for any matrices A and B.
- Show that $\operatorname{Det}\left(A^{T}\right)=\operatorname{Det}(A)$ for any matrix A.
- Show that $\operatorname{Det}\left(A^{-1}\right)=1 / \operatorname{Det}(A)$ for any matrix A.
- Show that $\operatorname{Det}\left(A^{\dagger}\right)=[\operatorname{Det}(A)]^{*}$.
- Show that if $U U^{\dagger}=U^{\dagger} U=1$, then
$\operatorname{Det}(U) \cdot[\operatorname{Det}(U)]^{*}=|\operatorname{Det}(U)|^{2}=1 \rightarrow \operatorname{Det}(U)=e^{i \theta}$ and θ is a free real parameter.
- Show that special unitary group $\boldsymbol{S U (\boldsymbol { n })}$ of $n \times n$ complex matrix with the conditions $U U^{\dagger}=U^{\dagger} U$ and $\operatorname{Det}(U)=+1$.

Show that the constraint $\operatorname{Det}(U)=+1$ kills the parameter θ for $\operatorname{Det}(U)=e^{i \theta}$ thus $\boldsymbol{S U (\boldsymbol { n })}$ has $\boldsymbol{n}^{\mathbf{2}} \mathbf{- 1}$ free parameters.

- Complex orthogonal group $O(n, C)$ is made of $n \times n$ complex matrix O with $O O^{T}=O^{T} O=1$.
- Show that $\operatorname{Det}\left(O O^{T}\right)=\operatorname{Det}(1)$ leads to $\operatorname{Det}(O)= \pm 1$. The determinant of an orthogonal matrix is determined and it is not a free parameter. We may choose the sign +1 or -1 . The two matrices are completely independent. Show that the two matrices are NOT related by any similarity transformation $U_{-}=P U_{+} P^{-1}$, where $U_{ \pm}$is a unitary matrix with determinant ± 1. You can check it by taking determinant of both sides.
- Show that diagonal components of $O O^{T}=O^{T} O=1$ gives n complex equations, $\sum_{k=1}^{n} o_{i k}^{2}=1+i 0$, where $i=1, \cdots, n$. The
condition eliminates $2 n$ free parameters.
- Show that off-diagonal components of $O O^{T}=O^{T} O=1$ gives $\frac{1}{2} n(n-1)$ complex equations, $\sum_{k=1}^{n} o_{i k} o_{j k}=0+i 0$, where $i, j=1, \cdots, n$. The condition eliminates $n(n-1)$ free parameters.
- Show that the number of constrants for the complex orthogonal group is $n(n+1)$. Therefore $\boldsymbol{O}(\boldsymbol{n}, \boldsymbol{C})$ has $n(n-1)$ free real parameters.
- Real orthogonal group $O(n, R)$ is made of $n \times n$ real matrix O with $O O^{T}=O^{T} O=1$.
- Show that $\operatorname{Det}\left(O O^{T}\right)=\operatorname{Det}(1)$ leads to $\operatorname{Det}(O)= \pm 1$. The determinant of an orthogonal matrix is determined and it is not a free parameter. We may choose the sign +1 or -1 . The
two matrices are completely independent. Show that the two matrices are NOT related by any similarity transformation $U_{-}=P U_{+} P^{-1}$, where $U_{ \pm}$is a unitary matrix with determinant ± 1. You can check it by taking determinant of both sides.
- Show that diagonal components of $O O^{T}=O^{T} O=1$ gives n real equations, $\sum_{k=1}^{n} o_{i k}^{2}=1$, where $i=1, \cdots, n$. The condition eliminates n free parameters.
- Show that off-diagonal components of $O O^{T}=O^{T} O=1$ gives $\frac{1}{2} n(n-1)$ real equations, $\sum_{k=1}^{n} o_{i k} o_{j k}=0$, where $i, j=1, \cdots, n$. The condition eliminates $\frac{1}{2} n(n-1)$ free parameters.
- Show that the number of constrants for the real orthogonal group is $\frac{1}{2} n(n+1)$. Therefore $\boldsymbol{O}(\boldsymbol{n}, \boldsymbol{R})$ has $\frac{1}{2} \boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$ free real parameters.
- Show that special orthogonal group $S O(n, C)$, a group made of the elements of $O(n, C)$ with determinant $=+1$, is a subgroup of $O(n, C)$. Show that $S O(n, C)$ has has $\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$ free real parameters like $O(n, C)$.
- Elements of $O(n, C)$ with determinant $=-1$ do not make a group. You can check it by taking determinant of a product of two matrices with determinant $=-1$ to find it is 1 instead of -1 . Show that there are $\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$ free real parameters in this space.
- Show that special orthogonal group $S O(n, R)$, a group made
of the elements of $O(n, R)$ with determinant $=+1$, is a subgroup of $O(n, C)$. Show that $S O(n, R)$ has has $\frac{1}{2} \boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$ free real parameters like $O(n, R)$.
- Elements of $O(n, R)$ with determinant $=-1$ do not make a group. You can check it by taking determinant of a product of two matrices with determinant $=-1$ to find it is 1 instead of -1 . Show that there are $\frac{1}{2} n(n-1)$ free real parameters in this space.

Euler angles
Show that

$$
\begin{gathered}
A(\alpha, \beta, \gamma) \equiv R_{z}(\gamma) R_{y}(\beta) R_{z}(\alpha) \\
=\left(\begin{array}{ccc}
+c_{\gamma} c_{\beta} c_{\alpha}-s_{\gamma} s_{\alpha} & c_{\gamma} c_{\beta} s_{\alpha}+s_{\gamma} c_{\alpha} & -c_{\gamma} s_{\beta} \\
-s_{\gamma} c_{\beta} c_{\alpha}-c_{\gamma} s_{\alpha} & -s_{\gamma} c_{\beta} s_{\alpha}+c_{\gamma} c_{\alpha} & s_{\gamma} s_{\beta} \\
s_{\beta} c_{\alpha} & s_{\beta} s_{\alpha} & c_{\beta}
\end{array}\right)
\end{gathered}
$$

where $c_{\alpha}=\cos \alpha$ and $s_{\alpha}=\sin \alpha$, makes a $\mathrm{SO}(3)$ group.

- Find α, β, γ such that $A(\alpha, \beta, \gamma)=R_{x}(\theta)$.
- Find α, β, γ such that $A(\alpha, \beta, \gamma)=R_{y}(\theta)$.
- Find α, β, γ such that $A(\alpha, \beta, \gamma)=R_{z}(\theta)$.

special unitary group $\mathrm{SU}(\boldsymbol{n})$

- Determinant is +1 : special.
- $U^{-1}=U^{\dagger}$: unitary.
- Complex $n \times n$ unitary matrix has $n^{2}-1$ degrees of freedom; $2 n^{2}-n_{\text {unitarity }}^{2}-1_{\text {Det }=1}=n^{2}-1$.
- Show that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ for any matrices A and B.
- Show that $U_{1} U_{2}$ is unitary if U_{1} and U_{2} are unitary.

Let us show that complex $n \times n$ unitary matrix $\left(a_{i j}\right)$ with positive determinant has $n^{2}-1$ independent parameters.

- Originally we have n^{2} complex ($2 n^{2}$ real) parameters because the matrix $\left(a_{i j}\right)$ is $n \times n$ and complex.
- Unitarity gives constraints $\sum_{k}\left(a^{\dagger}\right)_{i k} a^{k j}=\sum_{k} a_{k i}^{*} a_{k j}=\delta_{i j}$.
- for $i=j$ we have n conditions
$\sum_{k}\left(a^{\dagger}\right)_{i k} a^{k i}=\sum_{k} a_{k i}^{*} a_{k i}=\sum_{k}\left|a_{k i}\right|^{2}=1$. Note that this constraints are equations for real numbers because both side are real numbers; The sum of real numbers $\left|a_{k i}\right|^{2}$ is real.
- for $i \neq j$ we have $n(n-1)$ conditions. Note that there are $\frac{1}{2} n(n-1)$ equations and the left-hand side $\sum_{k} a_{k i}^{*} a_{k j}$ is a complex number. Thus we have $n+n(n-1)=n^{2}$ constraints
from the unitarity condition.
- The determinant is +1 . This is one more constraint.
- Subtracting the number of constraints from the number of original parametes, we get the number of independent parameters $2 n^{2}-\left(n^{2}+1\right)=n^{2}-1$.

Pauli matrices and special unitary group $\mathrm{SU}(2)$
$1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

- Show that $\operatorname{Tr}\left(\sigma_{i}\right)=0$.
- Show that $\sigma_{i} \sigma_{j}=\delta_{i j} 1+i \epsilon_{i j k} \sigma_{k}$.
- Show that $\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}$.
- Show that $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} 1$.
- Show that $\boldsymbol{a} \cdot \boldsymbol{\sigma} \boldsymbol{b} \cdot \boldsymbol{\sigma}=\boldsymbol{a} \cdot \boldsymbol{b} 1+i \boldsymbol{a} \times \boldsymbol{b} \cdot \boldsymbol{\sigma}$.
- Show that any Hermitian 2×2 matrix H is expressed as $H=\frac{1}{2} \operatorname{Tr}(H) 1+\frac{1}{2} \operatorname{Tr}(H \boldsymbol{\sigma}) \cdot \boldsymbol{\sigma}$.

Example 4.1.3 Show that $G=\left\{e^{i \theta}, \theta \in R\right\}$ is a unitary group $\mathrm{U}(1) ; \mathrm{U}=$ unitary, (1) single parameter.

- $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)} \in G$.
- $\left(e^{i \theta_{1}} e^{i \theta_{2}}\right) e^{i \theta_{3}}=e^{i \theta_{1}}\left(e^{i \theta_{2}} e^{i \theta_{3}}\right)=e^{i\left(\theta_{1}+\theta_{2}+\theta_{3}\right)} \in G$.
- $e^{i 0}=1 \in G$.
- $\left(e^{i \theta_{1}}\right)^{-1}=e^{-i \theta_{1}}=\left(e^{i \theta_{1}}\right)^{\dagger} \in G$.
- Show that $\{1,-1\}$ is a subgroup of G.
- Show that $\{1,-1, i,-i\}$ is a subgroup of G.
- Show that $\left\{1, \sigma_{1}\right\},\left\{1, \sigma_{2}\right\}$, and $\left\{1, \sigma_{3}\right\}$, are subgroups of $S U(2)$; Use $\sigma_{k}^{2}=1 \forall k=1,2,3$.

Homomorphism) Consider two groups G and H. There is a transform $H=\{h=f(g), g \in G\}$. If $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$, the two groups are homomorphic.

- Show that G and H are homomorphic If

$$
\begin{aligned}
& H=\left\{h=U g U^{-1}, g \in G\right\} \text { and } G=\{g\} ; \\
& h_{1} h_{2}=\left(U g_{1} U^{-1}\right)\left(U g_{2} U^{-1}\right)=U\left(g_{1} g_{2}\right) U^{-1} .
\end{aligned}
$$

Isomomorphism) Consider two groups G and H. If G and H are homomorphic and there is one-to-one correspondence, they are isomorphic.

- Show that G and H are homomorphic If

$$
\begin{aligned}
& H=\left\{h=U g U^{-1}, g \in G\right\} \text { and } G=\{g\} \\
& h_{1} h_{2}=\left(U g_{1} U^{-1}\right)\left(U g_{2} U^{-1}\right)=U\left(g_{1} g_{2}\right) U^{-1} .
\end{aligned}
$$

Diagonalization

- Solve the eigenvalue problem $A\left|x_{i}\right\rangle=\lambda_{i}\left|x_{i}\right\rangle$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text {, to find } \lambda_{1}=+1, \lambda_{2}=-1 \text { with }\left|x_{1}\right\rangle=(1,+1)^{T} \\
& \text { and }\left|x_{2}\right\rangle=(1,-1)^{T} \text {. }
\end{aligned}
$$

- Show that $P A P^{-1}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ is diagonal, where $P^{-1}=\left(\left|x_{1}\right\rangle,\left|x_{2}\right\rangle\right)$.
- Show that $P\left|x_{1}\right\rangle=(1,0)^{T}$ and $P\left|x_{2}\right\rangle=(0,1)^{T}$.

Reducible representation If a matrix is block-diagonalizable, it is reducible.

- $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Show that $P A P^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is diagonal,
where $P^{-1}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.
Ireducible representation Fully block-diagonalized matrix representation.

Time-independent Schrödinger equation $H \psi=E \psi$.

- if H is invariant under the similarity transformation $R H R^{-1}=H,[H, R]=0$.
- if $[H, R]=0, \psi$ and $R \psi$ are degenerate; have a common eigenvalue.

Multiplet; basis vectors of a vector space

- spin doublet; spin \uparrow and spin \downarrow states.
- $2 \ell+1$-plet; $\left|J=\ell, J_{z}=m_{\ell}=-\ell\right\rangle, \cdots,\left|J=\ell, J_{z}=m_{\ell}=\ell\right\rangle$

Matrix representation: $\psi_{i}, i=1, \cdots, n$ are basis vectors of a vector space V_{ψ}.

$$
(R \psi)_{j}=\sum_{k} r_{j k} \psi_{k}, \quad R \in G
$$

$r_{j k}$ is the matrix represenation of G with the basis
$\left\{\psi_{i} \mid i=1, \cdots, n\right\}$.
Irreducible representation: if $\left\{R \psi_{i}\right\}=V_{\psi} \forall \psi_{i} \in V_{\psi}$ and $\forall R \in G$, then the representation is irreducible.
Reducible representation: not irreducible.

Direct sum: If V_{ψ} is reducible and V_{i} are irreducible, then \exists a unitary transform U such that $U r U^{\dagger}$ is block-diagonalized as

$$
\operatorname{Ur} U^{\dagger}=\left(\begin{array}{ccc}
\boldsymbol{r}_{1} & \mathbf{0} & \ldots \\
\mathbf{0} & \boldsymbol{r}_{2} & \mathbf{0} \\
\vdots & \mathbf{0} & \ddots
\end{array}\right)
$$

And V_{ψ} is a direct sum of V_{i}

$$
V_{\psi}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n-1} \oplus V_{n}
$$

- Show that

$$
\begin{aligned}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & =\cos (\alpha+\beta) \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & =\sin (\alpha+\beta)
\end{aligned}
$$

- Show that

$$
\cos (i \alpha)=\cosh \alpha, \quad \sin (i \alpha)=i \sinh \alpha
$$

- Show that
$\cosh \alpha \cosh \beta+\sinh \alpha \sin \beta=\cosh (\alpha+\beta)$ $\sinh \alpha \cosh \beta+\cosh \alpha \sin \beta=\sinh (\alpha+\beta)$
- Show that $L(\alpha) L(\beta)=L(\alpha+\beta)=L(\beta) L(\alpha)$ where

$$
L(\alpha)=\left(\begin{array}{ll}
\cosh \alpha & \sinh \alpha \\
\sinh \alpha & \cosh \alpha
\end{array}\right)
$$

- Show that $\{L(\alpha)\}$ is an abelian group.
- Show that $[L(\alpha)]^{-1}=L(-\alpha)$.

4.2 Generators of Continuous Group

- Show that $\left(\sigma_{k}\right)^{n}=\delta_{n, \text { even }} 1+\delta_{n, \text { odd }} \sigma_{k}$.
- Prove the Euler's identity

$$
e^{i \sigma_{k} \theta} \equiv \sum_{n=0}^{\infty} \frac{\left(i \sigma_{k} \theta\right)^{n}}{n!}=1 \cos \theta+i \sigma_{k} \sin \theta .
$$

- Show that

$$
R(\phi)=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)=1 \cos \phi+i \sigma_{2} \sin \phi=e^{i \sigma_{2} \phi} .
$$

- Using Euler's identity, show that $e^{i \sigma_{k} \phi_{1}} e^{i \sigma_{k} \phi_{2}}=e^{i \sigma_{k}\left(\phi_{1}+\phi_{2}\right)}$
exponential function of a matrix
- Show that $\ln (1+x)=-\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!}$.
- Show that $\lim _{n \rightarrow \infty} n \ln \left(1+\frac{x}{n}\right)=x$.
- Show that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$.
- Show that $e^{i \phi S}=\lim _{n \rightarrow \infty}\left(1+\frac{i \phi}{n} S\right)^{n}$, where S is a matrix.

Beker-Housdorff formula : Consider $O=e^{i \phi S} A e^{-i \phi S}$.

- Show that $\frac{\partial}{\partial \phi} O=e^{i \phi S} i[S, A] e^{-i \phi S}$.
- Show that $\frac{\partial^{n}}{\partial \phi^{n}} O=e^{i \phi S} i^{n} f_{n}(S, A) e^{-i \phi S}$, where $f_{n+1}(S, A)=\left[S, f_{n}(i S, A)\right]$ and $f_{0}(S, A)=A$.
- Prove the Beker-Housdorff formula $O=\sum_{n=0}^{\infty} f_{n}(S, A) \frac{(i \phi)^{n}}{n!}$.
- Using the Beker-Housdorff formula, show that $e^{i \phi S} e^{-i \phi S}=1$; $\left(e^{i \phi S}\right)^{-1}=e^{-i \phi S}$.
- Using the Beker-Housdorff formula, show that $e^{i \phi S} A e^{-i \phi S}=A$, if A and S commute.

Generators of a group: Consider a group element $R=e^{i \phi S} \in G$, where $\operatorname{Det}(R)=+1$. Assume S is diagonalizable; $U S U^{-1}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$.

- Show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \forall A$ and B.
- Show that $\operatorname{Tr}\left(U R U^{-1}\right)=\operatorname{Tr}(R)$.
- Show that $\operatorname{Det}(R)=\operatorname{Det}\left(U R U^{-1}\right)=\operatorname{Det}\left(e^{U(i \phi S) U^{-1}}\right)=$ $\operatorname{Det}\left[\operatorname{diag}\left(e^{i \phi \lambda_{1}}, \cdots, e^{i \phi \lambda_{n}}\right)\right]=e^{i \phi \operatorname{Tr} S}$.
- Show that S is traceless; $\operatorname{Tr}(S)=0$.
- Show that if R is unitary, then S is Hermitian. (ϕ is real)
- Show that if R is real orthogonal, then S is Hermitian and pure imaginary.(ϕ is real)

Consider a group $R=e^{i \sum_{k} \phi_{k} S_{k}} \in G$ of order r, where
$\operatorname{Det}(R)=+1$. There are r independent parameters of transformation. We call S_{k} 's generators of the group.

- Show that $\operatorname{Det}\left(S_{i}\right)$ does not have to be +1 unlike R.
- Show that the number of generators is always same as the order of a group. Hint: count the number of constraints and compare with that for the group.
- Show that $\left[S_{i}, S_{j}\right]$ is antihermitian.
- Show that $\left\{S_{i}, S_{j}\right\} \equiv S_{i} S_{j}+S_{j} S_{i}$ does not have to be traceless.
- Show that \forall antihermitian $A, B=B^{\dagger}$, where $A=i B$.
- Show that $\left[S_{i}, S_{j}\right]$ is traceless.
- Show that if G is $\mathrm{SU}(n)$, there are $n^{2}-1$ generators.
- Show that if G is $\mathrm{SO}(n)$, there are $n(n-1) / 2$ generators.
- Show that any traceless Hermitian matrix can be expressed as a linear combination of $\left\{S_{i}\right\}$.
- Show that $\left[S_{i}, S_{j}\right]$ can be expressed in a linear combination of S_{k} 's. $\left[S_{i}, S_{j}\right]=i \sum_{k} c_{i j k} S_{k}$, where the real numbers $c_{i j k}$'s are the structure constants of the group.
- Show that if A and B are Hermitian, $\{A, B\}$ is Hermitian.
- Show that if A is Hermitian, eigenvalues are real. Hint: $H|\psi\rangle=\lambda|\psi\rangle \rightarrow\langle\psi| H|\psi\rangle=\lambda\langle\psi \mid \psi\rangle$. Take the complex conjugate.
- Show that if A is Hermitian of dimension n, one can choose n eigenvectors, where any two are orthogonal to each other; they make a basis set. Therefore, A is diagonalizable.
- Show that if A is Hermitian, $\operatorname{Tr}(A)$ is real.
- Show that $\operatorname{Tr}\left(S_{i} S_{j}\right)=\frac{1}{2} \operatorname{Tr}\left(S_{i} S_{j}+S_{j} S_{i}\right)=f_{i j}$ is real and symmetric under exchange of the two indices.
- Show that $\operatorname{Tr}\left(S_{i} S_{j}\right)=f_{i j}$ is diagonalizable.
- Show that once $\operatorname{Tr}\left(S_{i} S_{j}\right)=f_{i j}$ is diagonalized, one can choose the normalization so that $\operatorname{Tr}\left(S_{i}^{\prime} S_{j}^{\prime}\right)=\lambda \delta_{i j}$.
- $\operatorname{Tr}\left[\left[S_{i}, S_{j}\right], S_{k}\right]$ is totally antisymmetric under exchange of any two indices.
- Show that if $\operatorname{Tr}\left(S_{i} S_{j}\right)=\lambda \delta_{i j}, c_{i j k}$ is totally antisymmetric under exchange of any two indices. Hint:

$$
\operatorname{Tr}\left(\left[\left[S_{i}, S_{j}\right], S_{k}\right]\right)=2 i \lambda c_{i j k}
$$

- Show that the structure constant is independent of representation; $c_{i j k}$ is invarinat under $P S_{i} P^{-1}$.

Hamiltonian operator and time evolution

- Show that $f(x+a)=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}} f(x)=e^{ \pm a \frac{\partial}{\partial x}} f(x)$.
- Show that $H=i \frac{\partial}{\partial t}$ is the generator for the time evolution; $U(\Delta t) \psi(t)=\psi(t+\Delta t)$, where $U(\Delta t)=e^{-i H \Delta t}$.
- Show that if $H \psi(t)=E \psi(t)$, then $\psi(t)=e^{-i E\left(t-t_{0}\right)} \psi\left(t_{0}\right)$.
- Show that $U^{-1}(\Delta t)=U^{\dagger}(\Delta t)=U(-\Delta t)$.
- Show that $U(\Delta t) H U^{\dagger}(\Delta t)=H$.
- Show that for a free particle $\left(H=\frac{p_{x}^{2}}{2 m}\right)$ moving along the x-axis, $\left[H, p_{x}\right]=0$ and therefore $U(\Delta t) p_{x} U^{\dagger}(\Delta t)=p_{x}$. Thus $e^{i\left(p_{x} x-E t\right)}$ is the eigenstate of both H and p_{x}, simultaneously.

Linear momentum operator and translation in 1 dimension

- Show that $p_{x}=\frac{1}{i} \frac{\partial}{\partial x}$ is the generator for the translation; $U(\Delta x) \psi(x)=\psi(x+\Delta x)$, where $U(\Delta x)=e^{+i p_{x} \Delta x}$.
- Show that $\left[x, p_{x}\right]=i$.
- Show that $U^{-1}(\Delta x)=U^{\dagger}(\Delta x)=U(-\Delta x)$.
- Show that $U(\Delta x) p_{x} U^{\dagger}(\Delta x)=p_{x}$.
- Show that $U(\Delta x) x U^{\dagger}(\Delta x)=x+\Delta x$.
- Show that for a free particle $\left(H=\frac{p_{x}^{2}}{2 m}\right)$ moving along the x-axis, $\left[H, p_{x}\right]=0$ and therefore $U(\Delta x) p_{x} U^{\dagger}(\Delta x)=p_{x}$.

Linear momentum operator and translation in 3 dimensions

- Show that $p_{i}=\frac{1}{i} \frac{\partial}{\partial x_{i}}$'s are the generators for the $3-\mathrm{d}$ translation; $U(\Delta \boldsymbol{x}) \psi(\boldsymbol{x})=\psi(\boldsymbol{x}+\Delta \boldsymbol{x})$, where

$$
U(\Delta \boldsymbol{x})=e^{+i \boldsymbol{p} \cdot \Delta \boldsymbol{x}}
$$

- Show that $\left[x_{i}, p_{j}\right]=i \delta_{i j}$.
- Show that $U^{-1}(\Delta \boldsymbol{x})=U^{\dagger}(\Delta \boldsymbol{x})=U(-\Delta \boldsymbol{x})$.
- Show that $U(\Delta \boldsymbol{x}) \boldsymbol{p} U^{\dagger}(\Delta \boldsymbol{x})=\boldsymbol{p}$.
- Show that $U(\Delta \boldsymbol{x}) \boldsymbol{x} U^{\dagger}(\Delta \boldsymbol{x})=\boldsymbol{x}+\Delta \boldsymbol{x}$.
- Show that for a free particle $\left(H=\frac{p_{x}^{2}}{2 m}\right)$ moving along the x-axis, $\left[H, p_{x}\right]=0$ and therefore $U(\Delta \boldsymbol{x}) p_{x} U^{\dagger}(\Delta \boldsymbol{x})=p_{x}$.

Angular momentum operator and rotation in 3

 dimensions- Show that the rotation along the z-axis by an angle ϕ to the function $\psi(x, y)$ is

$$
\psi(x, y) \rightarrow R \psi(x, y)=\psi(x \cos \phi-y \sin \phi, y \cos \phi+x \sin \phi) .
$$

- Show that, as $\phi \rightarrow 0$,
$\psi(x \cos \phi-y \sin \phi, y \cos \phi+x \sin \phi) \rightarrow \psi(x-y \phi, y+x \phi) \rightarrow$
$\left[1+\phi\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\right] \psi(x, y)=\left(1+i \phi L_{z}\right) \psi(x, y)$, where
$L_{z}=x p_{y}-y p_{x}=\frac{1}{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$.
- Using $\lim _{n \rightarrow \infty}\left(1+\frac{\phi}{n} S\right)^{n}=e^{\phi S}$, show that $R \psi(x, y)=\psi(x-y \phi, y+x \phi)=e^{+i \phi L_{z}} \psi(x, y)$.
- Show that the angular momentum operators $L_{i}, i=1,2,3$ are generators of rotation.
- Show that the angular momentum operators L_{i} satisfies the Lie algebra $\left[L_{i} . L_{j}\right]=i \epsilon_{i j k} L_{k}$.
- Show that in the Cartesian coordinate(representation), where $\psi(x, y, z)=(x, y, z)^{T}$, the three generators are

$$
L_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), L_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), L_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Note that $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$.

- Show that the angular momentum operators $L_{i}, i=1,2,3$ have three distinctive eigenvalues $-1,0$, and +1 .

Rotation and SU(2)

- Show that $\mathrm{SU}(n)$ complex matrices have $n^{2}-1$ generators.
- Show that Pauli matrices are a set of generators for $S U(2)$.

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Show that $\operatorname{Tr}\left(\sigma^{i} \sigma^{j}\right)=2 \delta_{i j} ; \lambda=2$.
- Show that the structure constant is $c_{i j k}=2 \epsilon^{i j k}$; $\left[\sigma^{i}, \sigma^{j}\right]=2 i \epsilon^{i j k} \sigma^{k}$.
- Show that the Pauli matrices are Hermitian, traceless, and $\operatorname{Det}\left(\sigma^{i}\right)=-1$.
- Show that $S_{i}=\frac{1}{2} \sigma_{i}$ satisfies the Lie algebra for the angular moementum; $\left[S_{i}, S_{j}\right]=i \epsilon_{i j k} S_{k}$.
- Show that $(\boldsymbol{\sigma} \cdot \boldsymbol{a})^{2}=\boldsymbol{a}^{2}=\sum_{i} a_{i}^{2}$, where $\boldsymbol{a}=\left(a^{1}, a^{2}, a^{3}\right)$ is a real vector.
- Show that $(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})^{2 n}=1$, where $\hat{\boldsymbol{n}}^{2}=1$.
- Show that $(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})^{2 n+1}=\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$.
- Show that $U=e^{i \frac{\phi}{2} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}}=e^{i \phi \boldsymbol{S} \cdot \hat{\boldsymbol{n}}}$ produces the rotation along the axis $\hat{\boldsymbol{n}}$ by an angle ϕ.
- Show that $U=e^{i \frac{\phi}{2} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}}=1 \cos \frac{\phi}{2}+i \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} \sin \frac{\phi}{2}$.

$$
=\left(\begin{array}{ll}
\cos \frac{\phi}{2}+i \hat{n}_{3} \sin \frac{\phi}{2} & i\left(\hat{n}_{1}-i \hat{n}_{2}\right) \sin \frac{\phi}{2} \\
i\left(\hat{n}_{1}+i \hat{n}_{2}\right) \sin \frac{\phi}{2} & \cos \frac{\phi}{2}-i \hat{n}_{3} \sin \frac{\phi}{2}
\end{array}\right)
$$

Ladder operator approach: Consider the angular momentum operators. They satisfy the following Lie algebra $\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}$.

- Show that $\left[A, B^{2}\right]=[A, B] B+B[A, B] \quad \forall A, B$.
- Show that $\left[J_{1}, J_{2}^{2}\right]=+i\left(J_{2} J_{3}+J_{3} J_{2}\right)$.
- Show that $\left[J_{1}, J_{3}^{2}\right]=-i\left(J_{2} J_{3}+J_{3} J_{2}\right)$.
- Show that $\left[J_{i}, \boldsymbol{J}^{2}\right]=0$, where $\boldsymbol{J}^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2}$.
- Show that $\boldsymbol{J}^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{z}^{2}$
- Defining $J_{ \pm}=J_{1} \pm i J_{2}$, show that $\left[\boldsymbol{J}^{2}, J_{ \pm}\right]=0$,

$$
\left[J_{z}, J_{ \pm}\right]= \pm J_{ \pm}, \text {and }\left[J_{+}, J_{-}\right]=2 J_{z} .
$$

Because $\left[\boldsymbol{J}^{2}, J_{z}\right]=0$, we may choose a representation $|\lambda m\rangle$, where $J_{z}|\lambda m\rangle=m|\lambda m\rangle$ and $\boldsymbol{J}^{2}|\lambda m\rangle=\lambda|\lambda m\rangle$.

- Show that $J_{i}^{\dagger}=J_{i}$.
- Show that $J_{ \pm}^{\dagger}=J_{\mp}$.
- Show that $\langle\psi| A B|\psi\rangle=\langle\psi| B A|\psi\rangle$ if $B=A^{\dagger}$.
- Show that $J_{z} J_{ \pm}|\lambda m\rangle=(m \pm 1)|\lambda m\rangle$. Thus $J_{ \pm} \propto|j m \pm 1\rangle$.
- Using $J_{1}^{2}+J_{2}^{2}=\boldsymbol{J}^{2}-J_{3}^{2}$, show that $\lambda \geq m^{2}$, where $\boldsymbol{J}^{2}|\lambda m\rangle=\lambda|\lambda m\rangle$.
- Show that $\boldsymbol{J}^{2}=J_{\mp} J_{ \pm}+J_{3}\left(J_{3} \pm 1\right)$.
- If $j=\operatorname{Max}[m], J_{+}|\lambda j\rangle=0$. Using the condition, show that $\lambda=j(j+1)$. Hint: Calculate $J_{-} J_{+}|\lambda j\rangle=0$.

From now on, we replace the λ by j.

- If $j^{\prime}=\operatorname{Min}[m], J_{-}\left|j j^{\prime}\right\rangle=0$. Using the condition, show that $j^{\prime}=-j$. Hint: Calculate $J_{+} J_{-}\left|j j^{\prime}\right\rangle=0$.
- Show that there are $2 j+1$ states $|j m\rangle ; m=-j,-j+1, \cdots, j$.

Homework set 1: (due: Sep 18, 2004)

1. (4.1.2) Show that rotations about the z-axis form a subgroup of $\mathrm{SO}(3)$. Show that this group is not an invarinat subgroup of $\mathrm{SO}(3)$.
2. (4.1.5) A subgroup H of G has elements h_{i}. Let $x \in G$ and $x \notin H$. Show that the conjuagate subgroup $x H x^{-1}=\left\{x h_{i} x^{-1} \mid i=1,2, \cdots\right\}$ satisfies the four group postulates and therefore is a group.
3. (4.2.2) Prove that the general form of 2×2 unitary, unimodular matrix is $U=\left(\begin{array}{cc}a & b \\ -b^{*} & a^{*}\end{array}\right)$ with $a a^{*}+b b^{*}=1$.
4. Based on the result, show the parametrization

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \frac{\phi}{2}+i \hat{n}_{3} \sin \frac{\phi}{2} & i\left(\hat{n}_{1}-i \hat{n}_{2}\right) \sin \frac{\phi}{2} \\
i\left(\hat{n}_{1}+i \hat{n}_{2}\right) \sin \frac{\phi}{2} & \cos \frac{\phi}{2}-i \hat{n}_{3} \sin \frac{\phi}{2}
\end{array}\right) \text { is equivalent to } \\
& \left(\begin{array}{cc}
e^{i \xi} \cos \eta & e^{i \zeta} \sin \eta \\
-e^{-i \zeta} \sin \eta & e^{-i \xi} \cos \eta
\end{array}\right) \text { and covers all possible 3-d rotation. }
\end{aligned}
$$

5. Show that $J_{\mp} J_{ \pm}|j m\rangle=[j(j+1)-m(m \pm 1)]|j m \pm 1\rangle=$
$(j \mp m)(j \pm m+1)|j m \pm 1\rangle$
6. Show that $J_{ \pm}|j m\rangle=\sqrt{(j \mp m)(j \pm+1)}|j m \pm 1\rangle$
7. Consider a $\mathrm{SU}(2)$ group. Choosing the generators as one half of the Pauli matrices, show that
$S_{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad S_{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
8. Consider a Lorentz boost $\binom{t^{\prime}}{x^{\prime}}=L\binom{t}{x}$, where
$L=\left(\begin{array}{ll}\cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha\end{array}\right)$. Show that the boost matrix can be expressed as $L=e^{\alpha \sigma_{1}}=1 \cosh \alpha+\sigma_{1} \sinh \alpha$, where $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Chaper 6 Functions of Complex Variables

Complex Number

$$
C \equiv\{z=x+i y \mid x, y \in R \text { and } i=\sqrt{-1}\}
$$

- Show that C is closed under multiplication.
- Show that $x+i y=r(\cos \theta+i \sin \theta)$, where $\cos \theta=x / r$, $\sin \theta=y / r$, and $r=|z| \equiv \sqrt{x^{2}+y^{2}}$.
- Defining $z^{*}=\operatorname{Re}(z)-i \operatorname{Im}(z)$, show that

$$
z z^{*}=|z|^{2}=[\operatorname{Re}(z)]^{2}+[\operatorname{Im}(z)]^{2}=r^{2}
$$

Complex Number and 2-d vector

$$
\begin{aligned}
z & =x+i y=r e^{i \theta}, r=\sqrt{x^{2}+y^{2}} \\
x & =r \cos \theta, y=r \sin \theta \\
\boldsymbol{r} & =\hat{\mathbf{x}} x+\hat{\mathbf{y}} y: 1-\text { to }-1 \text { correspondence }
\end{aligned}
$$

- Show that $z^{-1} \in C \forall z \in C-\{0\}$ and $z^{-1}=z^{*} /|z|^{2}$.
- Show that $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$, where $\theta=\arg (z)$ and $z=|z|(\cos \theta+i \sin \theta)$.
- Show that $|z| \geq|\operatorname{Re}(z)| \geq \operatorname{Re}(z)$.
- Show that $|z| \geq|\operatorname{Im}(z)| \geq \operatorname{Im}(z)$.
- Show that $\left|z_{1} z_{2}\right| \geq\left|\operatorname{Re}\left(z_{1} z_{2}\right)\right|,\left|\operatorname{Im}\left(z_{1} z_{2}\right)\right|$.
- Show that $\left|z_{1} z_{2}\right| \geq\left|\operatorname{Re}\left(z_{1} z_{2}^{*}\right)\right|,\left|\operatorname{Im}\left(z_{1} z_{2}^{*}\right)\right|$.
- Show that $|z| \pm \operatorname{Re}(z) \geq 0$.
- Show that $|z| \pm \operatorname{Im}(z) \geq 0$.

Schwarz inequality

- Show that $|x+y| \leq|x|+|y| \forall x, y \in R$. Hint: $|x| \geq \pm x$.
- Show that $|x|-|y| \leq|x+y| \forall x, y \in R$. Hint: $|x| \geq \pm x$.
- Therefore $|x|-|y| \leq|x+y| \leq|x|+|y| \forall x, y \in R$.
- Show that $|z|^{2} \geq 0$. Thus $\left|\lambda z_{1}+z_{2}\right|^{2} \geq 0$.
- Choose real λ and show that $\operatorname{Re}\left(z_{1} z_{2}^{*}\right) \leq\left|z_{1} z_{2}^{*}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
- Show that $\left|z_{1}\right|\left|z_{2}\right| \geq \pm \operatorname{Re}\left(z_{1} z_{2}^{*}\right)$ leads to

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \forall z_{1}, z_{2} \in C .
$$

- Interpret this result in terms of vectors.
$e^{i \theta}$
- Show that $i^{2}=-1 \rightarrow i^{2 n}=(-1)^{n}, i^{2 n+1}=i(-1)^{n}$.
- Show that $\cos \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \theta^{2 n}$.
- Show that $\sin \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \theta^{2 n+1}$.
- Show that $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$.
- Show that $e^{i \theta}=\cos \theta+i \sin \theta$
- Show that $\left|e^{i \theta}\right|=1$.

De Moivre's Formula

- Show that $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$.
- Show that $z^{n}=r^{n} e^{i n \theta}$
- Show that $(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k}$.
- Show that $\cos n \theta=\sum_{k=0}^{2 k \leq n} \frac{(-1)^{k} n!}{(2 k)!(n-2 k)!} \cos ^{n-2 k} \theta \sin ^{2 k} \theta$.
- Show that
$\sin n \theta=\sum_{k=0}^{2 k+1 \leq n} \frac{(-1)^{k} n!}{(2 k+1)!(n-2 k-1)!} \cos ^{n-2 k-1} \theta \sin ^{2 k+1} \theta$.
- Prove the De Moivre's Formula
$e^{i n \theta}=\left(e^{i \theta}\right)^{n}=(\cos \theta+i \sin \theta)^{n}$.

Problem 6.1.6

- Show that $\sum_{n=0}^{N-1} a r^{n-1}=\frac{a\left(1-r^{N}\right)}{1-r}$.
- Show that

$$
\begin{aligned}
\sum_{n=0}^{N-1}\left(e^{i \theta}\right)^{n} & =\frac{1-e^{i N \theta}}{1-e^{i \theta}}=e^{i \frac{(N-1) \theta}{2}} \times \frac{e^{i \frac{N \theta}{2}}-e^{-i \frac{N \theta}{2}}}{e^{i \frac{\theta}{2}}-e^{-i \frac{\theta}{2}}} \\
& =e^{i \frac{(N-1) \theta}{2}} \times \frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}}
\end{aligned}
$$

- Show that $\sum_{n=0}^{N-1} \cos n \theta=\cos \frac{(N-1) \theta}{2} \times \frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}}$
- Show that $\sum_{n=0}^{N-1} \sin n \theta=\sin \frac{(N-1) \theta}{2} \times \frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}}$

Single-slit diffraction

$$
\begin{aligned}
E & =\frac{1}{N} \sum_{k=1}^{N} E_{k} \rightarrow E_{0} \sin \omega t \text { if } \theta=0 \\
E_{k} & =\frac{E_{0}}{N} \sin \left(\omega t+\frac{2 \pi a \sin \theta}{\lambda} \frac{k}{N}\right)=E_{0} \operatorname{Im} e^{i\left(\omega t+\frac{2 \pi a \sin \theta}{\lambda} \frac{k}{N}\right)} \\
E & =\frac{E_{0}}{N} \operatorname{Im} \sum_{k=1}^{N} e^{i\left(\omega t+\frac{2 \pi a \sin \theta}{\lambda} \frac{k}{N}\right)} \\
& =\frac{E_{0}}{N} \operatorname{Im}\left[e^{i \omega t} \sum_{k=1}^{N}\left(e^{i \frac{2 \pi \sin \theta}{\lambda} \cdot \frac{a}{N}}\right)^{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E_{0}}{N} \operatorname{Im}\left[e^{i \omega t} \frac{1-e^{i \frac{2 \pi a \sin \theta}{\lambda}}}{1-e^{i \frac{2 \pi}{\lambda} \cdot \frac{a \sin \theta}{N}}}\right] \\
& =\frac{E_{0}}{N} \operatorname{Im}\left[e^{i \omega t} \frac{e^{i \frac{\pi a \sin \theta}{\lambda}}}{e^{i \frac{\pi}{\lambda} \cdot \frac{a \sin \theta}{N}}} \frac{\sin \left(\frac{\pi a \sin \theta}{\lambda}\right)}{\sin \left(\frac{\pi a \sin \theta}{\lambda N}\right)}\right] \\
& =\frac{E_{0}}{N} \frac{\sin \left(\frac{\pi a \sin \theta}{\lambda}\right)}{\sin \left(\frac{\pi a \sin \theta}{\lambda N}\right)} \operatorname{Im} e^{i\left(\omega t+\frac{\pi a \sin \theta}{\lambda} \frac{N-1}{N}\right)} \\
\lim _{N \rightarrow \infty} E & =E_{0} \times \frac{\sin \alpha}{\alpha} \times \sin \left(\omega t+\frac{\pi a \sin \theta}{\lambda}\right), \alpha=\frac{\pi a \sin \theta}{\lambda} \\
\frac{I}{I_{m}} & =\frac{\left.E^{2}\right|_{\operatorname{avg}}}{\left.E_{0}^{2}\right|_{\operatorname{avg}}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}
\end{aligned}
$$

Assumimg $|p|<1$ show the following formulas.

- $\sum_{n=0}^{\infty} p^{n} \cos n \theta=\operatorname{Re} \sum_{n=0}^{\infty} p^{n} e^{i n \theta}$.
- $\sum_{n=0}^{\infty} p^{n} \sin n \theta=\operatorname{Im} \sum_{n=0}^{\infty} p^{n} e^{i n \theta}$.
- $\sum_{n=0}^{\infty} p^{n} e^{i n \theta}=\frac{1}{1-p e^{i n \theta}}$.
- $\operatorname{Re} \frac{1}{1-p e^{i n \theta}}=\frac{1-p \cos \theta}{1-2 p \cos \theta+p^{2}}$.
- $\operatorname{Im} \frac{1}{1-p e^{i n \theta}}=\frac{p \sin \theta}{1-2 p \cos \theta+p^{2}}$.
- $\sum_{n=0}^{\infty} p^{n} \cos n \theta=\frac{1-p \cos \theta}{1-2 p \cos \theta+p^{2}}$.
- $\sum_{n=0}^{\infty} p^{n} \sin n \theta=\frac{p \sin \theta}{1-2 p \cos \theta+p^{2}}$.

Prove the following formulas.

- $e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$.
- $e^{-z}=e^{-x} e^{-i y}=e^{-x}(\cos y-i \sin y)$.
- $e^{i z}=e^{i(x+i y)}=e^{-y} e^{i x}=e^{-y}(\cos x+i \sin x)$.
- $e^{-i z}=e^{-i(x+i y)}=e^{y} e^{-i x}=e^{y}(\cos x-i \sin x)$.
- $\cos i z=\frac{e^{i(i z)}+e^{-i(i z)}}{2}=\cosh z$.
- $\sin i z=\frac{e^{i(i z)}-e^{-i(i z)}}{2 i}=i \sinh z$.
- $\cosh i z=\frac{e^{(i z)}+e^{-(i z)}}{2}=\cos z$.
- $\sinh i z=\frac{e^{(i z)}-e^{-(i z)}}{2}=i \sin z$.

Prove the following formulas.

- $\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y$.
- $\cos (x+i y)=\cos x \cosh y-i \sin x \sinh y$.
- $\cosh ^{2} y-\sinh ^{2} y=1$.
- $|\sin (x+i y)|^{2}=\sin ^{2} x+\sinh ^{2} y$.
- $|\cos (x+i y)|^{2}=\cos ^{2} x+\sinh ^{2} y$.
- $\forall x \in R \sin ^{2} x \leq 1$.
- $\forall x|\sin (x+i y)|^{2} \geq 1$ if $|y|>\ln (1+\sqrt{2})$.
- $|\sin z| \geq|\sin x|$.
- $|\cos z| \geq|\cos x|$.

Prove the following formulas.

- $\sinh (x+i y)=\sinh x \cos y+i \cosh x \sin y$.
- $\cosh (x+i y)=\cosh x \cos y+i \sin x \sinh y$.
- $|\sinh (x+i y)|^{2}=\sinh ^{2} x+\sin ^{2} y$.
- $|\cosh (x+i y)|^{2}=\cosh ^{2} x+\cos ^{2} y$.

Prove the following formulas.

- $\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$.
- $\cos \theta=1-2 \sin ^{2} \frac{\theta}{2}=2 \cos ^{2} \frac{\theta}{2}-1$.
- $\tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}$.
- $\tan ^{2} \frac{\theta}{2}=\frac{1-\cos \theta}{1+\cos \theta}$.
- $\sinh x=2 \sinh \frac{x}{2} \cosh \frac{x}{2}$.
- $\cosh x=2 \sinh ^{2} \frac{x}{2}+1=2 \cosh ^{2} \frac{x}{2}-1$.
- $\tanh \frac{x}{2}=\frac{\cosh x-1}{\sinh x}$.
- $\tanh ^{2} \frac{x}{2}=\frac{\cosh x-1}{\cosh x+1}$.

Prove the following formulas.

- $|(\cosh z) \pm 1|^{2}=(\cosh x \cos y \pm 1)^{2}+(\sinh x \sin y)^{2}=$ $(\cosh x \pm \cos y)^{2}$.
- $[(\cosh z) \pm 1][(\cosh z) \mp 1]^{*}=(\sinh x \mp i \sin y)^{2}$.
- $\tanh ^{2} \frac{z}{2}=\left(\frac{\sinh x+i \sin y}{\cosh x+\cos y}\right)^{2}$.
- $\operatorname{coth}^{2} \frac{z}{2}=\left(\frac{\sinh x-i \sin y}{\cosh x-\cos y}\right)^{2}$.

Square root Solve $z^{2}=R e^{i \Theta}$

$$
\begin{aligned}
z & =r e^{i \theta} \\
z^{2} & =r^{2} e^{i n \theta}=R e^{i(\Theta+2 k \pi)} \\
r & =\sqrt{R} \\
\theta & =\frac{\Theta}{2}, \frac{\Theta}{2}+\pi \\
z_{1} & =\sqrt{R} e^{i \frac{\Theta}{2}}, z_{2}=\sqrt{R} e^{i\left(\frac{\Theta}{2}+\pi\right)}
\end{aligned}
$$

- Solve $z^{2}=1$.
- Solve $z^{2}=-1$.
- Solve $z^{2}=i$.
N-th root
Solve $z^{n}=R e^{i \Theta}$

$$
\begin{aligned}
z & =r e^{i \theta} \\
z^{n} & =r^{n} e^{i n \theta}=R e^{i(\Theta+2 k \pi)} \\
r & =R^{1 / n} \\
\theta & =\frac{\Theta+2 k \pi}{n}, k=0,1, \cdots, n-1
\end{aligned}
$$

- Solve $z^{3}=1$.
- Solve $z^{4}=-1$.
- Solve $z^{5}=i$.

Logarithm

$$
\begin{aligned}
\ln z= & \ln \left[r e^{i(\theta+2 n \pi)}\right] \\
= & \ln r+i(\theta+2 n \pi) \rightarrow \text { multi }- \text { valued } \\
& \operatorname{cut}\left(\theta_{0}-\pi<\theta<\theta_{0}+\pi\right) \text { is needed } \\
= & \ln r \rightarrow \text { principal value } \\
e^{\ln z}= & e^{\ln \left[r e^{i(\theta+2 n \pi)}\right]} \\
= & e^{\ln r+i(\theta+2 n \pi)} \\
= & e^{\ln r} e^{i(\theta+2 n \pi)} \\
= & r e^{i \theta}=z
\end{aligned}
$$

Cauchy-Riemann condition If $f(z)$ is differentiable

$$
\begin{aligned}
f^{\prime}(z) & =\frac{d f}{d z}=\lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z} \\
& =\frac{\partial f}{\partial x}=\lim _{\delta x \rightarrow 0} \frac{f(z+\delta x)-f(z)}{\delta x} \\
& =\frac{\partial f}{\partial(i y)}=\lim _{\delta y \rightarrow 0} \frac{f(z+i \delta y)-f(z)}{i \delta y}
\end{aligned}
$$

What happens if

$$
\frac{\partial f}{\partial x} \neq \frac{\partial f}{\partial(i y)} ?
$$

Laplace equation and Harmonic function: Consider a differentiable function $f(z)$;

$$
f(z)=u(z)+i v(z), f_{a} \equiv \frac{\partial f}{\partial a}
$$

- Show that $u_{x}=v_{y}, u_{y}=-v_{x}$.
- Show that $u_{x x}=v_{y x}=v_{x y}=-u_{y y} \rightarrow \nabla^{2} u=0$
- $v_{y y}=u_{x y}=v_{y x}=-v_{x x} \rightarrow \nabla^{2} v=0$
- u and v are harmonic functions; solutions to $2-\mathrm{d}$ Laplace equation; potential function.
- Show that the two 2-dimensional vectors $\left(u_{x}, v_{y}\right)$ and $\left(u_{y}, v_{x}\right)$ are orthogonal; $u_{x} u_{y}+v_{x} v_{y}=0$.

Analytic function: A function is analytic at $z=z_{0}$; If the function is differentiable at $z=z_{0}$ and in some small region around z_{0}. Entire function: Analytic everywhere.

- Show that $f(z)=z$ is analytic. $(u=x, v=y)$
- Show that $f(z)=\operatorname{Re}(z)$ is not analytic. $(u=x, v=0)$
- Show that $f(z)=\operatorname{Im}(z)$ is not analytic. $(u=0, v=y)$
- Show that $f(z)=z^{*}$ is not analytic. $(u=x, v=-y)$
- Show that $f(z)=z^{2}$ is analytic. $\left(u=x^{2}-y^{2}, v=2 x y\right)$
- Show that $f(z)=|z|^{2}=z z^{*}$ is not analytic.

$$
\left(u=x^{2}+y^{2}, v=0\right)
$$

- $f(z)=u+i v$ and $g(z)=u^{\prime}+i v^{\prime}$ are analytic. Using Cauchy-Rieman conditions for $f(z)$ and $g(z)$, show that $h(z)=f(z)+g(z)=U+i V$ is also analytic.
$\left(U=u+u^{\prime}, V=v+v^{\prime}\right)$
- $f(z)=u+i v$ and $g(z)=u^{\prime}+i v^{\prime}$ are analytic. Using Cauchy-Rieman conditions for $f(z)$ and $g(z)$, show that $h(z)=f(z) g(z)=U+i V$ is also analytic.
$\left(U=u u^{\prime}-v v^{\prime}, V=u v^{\prime}+v u^{\prime}\right)$
- Using above result, show that $[f(z)]^{n}$ is analytic if $f(z)$ is analytic.
- Show that z^{n} is analytic.

Constant electric field along the x-axis

$$
\begin{aligned}
\Phi(z) & =\phi(z)+i \psi(z)=-E_{0} z \\
\boldsymbol{E} & =-\nabla \phi=-\phi_{x} \hat{\mathbf{x}}-\phi_{y} \hat{\mathbf{y}}, \quad \nabla^{2} \phi=-\nabla \cdot \boldsymbol{E}=0 \\
E_{x} & =-\phi_{x}, \quad E_{y}=-\phi_{y} \\
\frac{d \Phi(z)}{d z} & =-E_{0} \\
& =\phi_{x}+i \psi_{x}=\phi_{x}-i \phi_{y}=-E_{x}+i E_{y} \\
E_{x} & =-\operatorname{Re} \frac{d \Phi(z)}{d z}=E_{0} \\
E_{y} & =+\operatorname{Im} \frac{d \Phi(z)}{d z}=0
\end{aligned}
$$

\boldsymbol{E} field along a long charged wire

$$
\begin{aligned}
\oint \boldsymbol{E} \cdot d \boldsymbol{A} & =\frac{Q}{\varepsilon_{0}} \leftarrow Q=\lambda L \\
\boldsymbol{E} & =\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{\boldsymbol{r}}{r^{2}}, E_{x}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x}{r^{2}}, E_{y}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{y}{r^{2}} \\
\frac{d \Phi(z)}{d z} & =-E_{x}+i E_{y}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{-z^{*}}{|z|^{2}}=-\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{1}{z} \\
\Phi(z) & =-\frac{\lambda}{2 \pi \varepsilon_{0}} \int \frac{d z}{z}=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln z \\
& =-\frac{\lambda}{2 \pi \varepsilon_{0}}(\ln r+i \theta) \\
\phi & =\operatorname{Re} \Phi=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln r
\end{aligned}
$$

B field around a long wire

$$
\begin{aligned}
\Phi(z) & =\phi(z)+i \psi(z)=\phi+i A(z) \\
\boldsymbol{B} & =\nabla \times \boldsymbol{A}=\hat{\mathbf{x}} B_{x}+\hat{\mathbf{y}} B_{y}, \quad \boldsymbol{A}=\hat{\mathbf{z}} A(x, y) \\
\nabla \cdot \boldsymbol{B} & =0=\nabla(\nabla \cdot A)-\nabla^{2} \boldsymbol{A}=0 \rightarrow \nabla^{2} A=0 \\
B_{x} & =\frac{\partial A}{\partial y}=-\frac{\mu_{0} I}{2 \pi} \frac{y}{r^{2}}, \quad B_{y}=-\frac{\partial A}{\partial x}=\frac{\mu_{0} I}{2 \pi} \frac{x}{r^{2}} \\
\frac{d \Phi(z)}{d z} & =\frac{\partial A}{\partial y}+i \frac{\partial A}{\partial x}=B_{x}-i B_{y} \\
& =\frac{\mu_{0} I}{2 \pi} \frac{(-y-i x)}{r^{2}}=-i \frac{\mu_{0} I}{2 \pi} \frac{x-i y}{r^{2}}=-i \frac{\mu_{0} I}{2 \pi z} \\
\Phi & =-i \frac{\mu_{0} I}{2 \pi} \ln z, \quad A=\operatorname{Im} \Phi=-\frac{\mu_{0} I}{2 \pi} \ln r
\end{aligned}
$$

A stupid way to show that z^{n} is analytic

$$
\begin{aligned}
& z^{n}=(x+i y)^{n}=u+i v \\
& u=\sum_{k=0}^{2 k \leq n} \frac{(-1)^{k} n!}{(2 k)!(n-2 k)!} x^{n-2 k} y^{2 k} \\
& v=\sum_{k=0}^{2 k+1 \leq n} \frac{(-1)^{k} n!}{(2 k+1)!(n-2 k-1)!} x^{n-2 k-1} y^{2 k+1} \\
& u_{x}=v_{y}=\sum_{k=0}^{2 k+1 \leq n} \frac{(-1)^{k} n!}{(2 k)!(n-2 k-1)!} x^{n-2 k-1} y^{2 k} \\
& u_{y}=-v_{x}=\sum_{k=0}^{2 k \leq n} \frac{(-1)^{k} n!}{(2 k-1)!(n-2 k)!} x^{n-2 k} y^{2 k-1}
\end{aligned}
$$

z^{*} is NOT differentiable

$$
\begin{aligned}
& z^{*}=x-i y=u+i v \rightarrow u=x, v=-y \\
& u_{x}=1 \neq v_{y}=-1, \quad u_{y}=-v_{x}=0
\end{aligned}
$$

$1 / z$

$$
\begin{aligned}
\frac{1}{z} & =\frac{z^{*}}{|z|^{2}}=u+i v, \quad u=\frac{x}{x^{2}+y^{2}}, v=-\frac{y}{x^{2}+y^{2}} \\
u_{x} & =\frac{-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
v_{y} & =\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{1}{x^{2}+y^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \rightarrow u_{x}=v_{y} \\
u_{y} & =\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
v_{x} & =\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \rightarrow u_{y}=-v_{x}
\end{aligned}
$$

However, the fuction is not defined at $z=0$.

Elementary functions Explain why the following functions are analytic and prove the equalities.

$$
\begin{aligned}
z^{n} & =\text { differentiable } \\
e^{z} & =\sum_{k=0}^{\infty} \frac{z^{n}}{n!} \\
\sin z & =\sum_{k=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cos z & =\sum_{k=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
\ln (1+z) & =\sum_{k=0}^{\infty}(-1)^{n} \frac{z^{n}}{n}, \quad|z|<1
\end{aligned}
$$

Prove

$$
\begin{aligned}
\frac{d}{d z} z^{n} & =n z^{n-1} \\
\frac{d}{d z} e^{z} & =e^{z} \\
\frac{d}{d z} \sin z & =\cos z \\
\frac{d}{d z} \cos z & =-\sin z \\
\frac{d}{d z} \ln (1+z) & =\frac{1}{1+z},|z|<1
\end{aligned}
$$

Homework set 2: (due: Sep. 25, 2004)

1. (6.1.14) Find all the zeros of (a) $\sin z$, (b) $\cos z$,
(c) $\sinh z$,
(d) $\cosh z$.
2. (6.1.15) Show that
(a) $\sin ^{-1} z=-i \ln \left(i z \pm \sqrt{1-z^{2}}\right)$
(b) $\sinh ^{-1} z=\ln \left(z \pm \sqrt{z^{2}+1}\right)$
(c) $\cos ^{-1} z=-i \ln \left(i z \pm \sqrt{1-z^{2}}\right)$
(d) $\cosh ^{-1} z=\ln \left(z \pm \sqrt{z^{2}-1}\right)$
(e) $\tan ^{-1} z=\frac{i}{2} \ln \left(\frac{i+z}{i-z}\right)$
(f) $\tanh ^{-1} z=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right)$.
3. (6.1.20) Show that
(a) $e^{\ln z}$ always equals z.
(b) $\ln e^{z}$ does not always equals z.
4. (6.2.3) Having shown that the real part $u(x, y)$ and the imaginary part $v(x, y)$ of an analytic function $w(z)$ each satisfy Laplace's equation, show that $u(x, y)$ and $v(x, y)$ cannot both have either a maximum or a minimum in the interior of any region in which $w(x, y)$ is analytic. They can have saddle points.
5. (6.2.4) Let $A=w_{x x}, B=w_{x y}$, and $C=w_{y y}$. From the calculus of functions of two variables, $w(x, y)$, we have a saddle point if $B^{2}-A C>0$. With $f(z)=u(x, y)+i v(x, y)$, apply the Cauchy-Riemann conditions and show that both
$u(x, y)$ and $v(x, y)$ do not have a maximum or a minimum in a finite region of the complex plain.
6. (6.2.7) The function $f(z)=u(x, y)+i v(x, y)$ is analytic. Show that $\left[f\left(z^{*}\right)\right]^{*}$ is also analytic.
7. (6.2.8) A proof of the Schwarz inequality involves minimizing an expression

$$
f=\psi_{a a}+\lambda^{*} \psi_{a b}+\lambda \psi_{a b}^{*}+\lambda \psi_{b b} \geq 0 .
$$

The ψ are integrals of products of functions; $\psi_{a a}$ and $\psi_{b b}$ are real, $\psi_{a b}$ is complex, and λ is a complex parameter.

- Differentiate the preceding expression with respect to λ^{*}, treating λ as an independent parameter, independent of λ^{*}. Show that setting the derivative $\partial f / \partial \lambda^{*}$ equal to zero
yields $\lambda=-\psi_{a b}^{*} / \psi_{b b}$.
- Show that $\partial f / \partial \lambda=0$ leads to the same result.
- Let $\lambda=x+i y, \lambda^{*}=x-i y$. Set the x and y derivatives equal to zero and show that again $\lambda=-\psi_{a b}^{*} / \psi_{b b}$.
6.3 Cauchy's Integral Theorem

Integral exists if its value is independent of the path

$$
\begin{aligned}
\int_{z_{1}}^{z_{2}} d z f(z) & =\int_{x_{1}+i y_{1}}^{x_{2}+i y_{2}}[u+i v][d x+i d y] \\
& =\int_{x_{1}+i y_{1}}^{x_{2}+i y_{2}}[u d x-v d y] \\
& +i \int_{x_{1}+i y_{1}}^{x_{2}+i y_{2}}[v d x+u d y] \\
& =F\left(z_{2}\right)-F\left(z_{1}\right)
\end{aligned}
$$

Cauchy integral for powers: Consider a path C on a circle of radius r, where the center is the origin. We integrate z^{n} over the circle from $z=r$ through $z=r e^{i 2 \pi}$.

- Show that the point on the path is $z=r e^{i \theta}$, and $d z=i r e^{i \theta} d \theta$, where the θ is the polar angle.
- Show that $\int_{C} z^{n} d z=0 \forall$ integer $n \neq 1$.
- Show that $\int_{C} \frac{d z}{z}=2 \pi i$.
- Show that $\int_{C} \frac{d z}{z-z_{0}}=0 \forall z_{0}$ such that $\left|z-z_{0}\right|>r$.
- Show that $\int_{C} d z\left(z-z_{0}\right)^{n}=0 \forall n$ and $\forall z_{0}$ such that $\left|z-z_{0}\right|>r$.

If $|z|>0, z^{n}$ is analytic for any integer n
$C \quad: \quad$ circle of radius $r, \quad z=r e^{i \theta}, \quad d z=i r e^{i \theta} d \theta$
$n \neq-1$
$\begin{aligned} \int_{C} d z z^{n} d z & =i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1) \theta} d \theta=\frac{r^{n+1}}{n+1}\left[e^{i(n+1) 2 \pi}-1\right] \\ & =\left[\frac{z^{n+1}}{n+1}\right]_{r}^{r e^{2 \pi i}}=0\end{aligned}$

$$
\begin{aligned}
\int_{C} \frac{d z}{z} d z & =i \int_{0}^{2 \pi} d \theta=2 \pi i \\
& =\ln \left(r e^{2 \pi i}\right)-\ln r=2 \pi i
\end{aligned}
$$

- Show that $\int_{x_{1}}^{x_{2}} f(x) d x=-\int_{x_{2}}^{x_{1}} f(x) d x$.
- Show that $\int_{x_{1}}^{x_{2}} f(x, y) d x=-\int_{x_{2}}^{x_{1}} f(x, y) d x$.
- Show that $\int_{z_{1}}^{z_{2}} f(z) d z=-\int_{z_{2}}^{z_{1}} f(z) d z$. Hint: Rewrite the integral in terms of the integrals of real variables x and y.
- For any contour encircling $z=0$ once counterclockwise, $\frac{1}{2 \pi i} \oint z^{m-n-1} d z=\delta_{m n}$, for integers m, n

Cauchy's integral theorem
If $f(z)$ is analytic and its partial derivatives are continuous throughout some simply connected region R, for every closed path C in R the integral of $f(z)$ around C vanishes or

$$
\oint_{C} f(z) d z=0
$$

Proof using Stoke's theorem

$$
\begin{aligned}
& \boldsymbol{V}=\hat{\mathbf{x}} V_{x}+\hat{\mathbf{y}} V_{y} \\
& \oint_{C} \boldsymbol{V} \cdot d \boldsymbol{s}=\int_{A} \boldsymbol{\nabla} \times \boldsymbol{V} \cdot d \boldsymbol{A} \\
& \oint_{C}\left(V_{x} d x+V_{y} d y\right)=\int_{A}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) d x d y \\
& \text { if }\left(V_{x}, V_{y}\right)=(u,-v), \quad \oint_{C}(u d x-v d y)=-\int_{A}\left(v_{x}+u_{y}\right) d x d y \\
& \text { if }\left(V_{x}, V_{y}\right)=(v, u), \quad \oint_{C}(v d x+u d y)=\int_{A}\left(u_{x}-v_{y}\right) d x d y
\end{aligned}
$$

It's like a conservative force

$$
\begin{aligned}
& \oint_{C} f(z) d z= \oint_{C}(u d x-v d y)+i \oint(u d y+v d x) \\
&= \int_{A}\left[-\left(v_{x}+u_{y}\right)+i\left(u_{x}-v_{y}\right)\right] d x d y=0 \\
& \leftarrow \text { Cauchy }- \text { Riemann condition } \leftarrow \text { analytic } \\
& \oint_{C} f(z) d z= \int_{z_{1}}^{z_{2}} f(z) d z+\int_{z_{2}}^{z_{1}} f(z) d z \\
&= 0 \\
& \int_{z_{1}}^{z_{2}} f(z) d z= F\left(z_{2}\right)-F\left(z_{1}\right) \\
& F(z) \text { is like a potential }
\end{aligned}
$$

Simply connected region We take a contour C. If $f(z)$ is analytic $\forall z \in R$ such that $C=\partial R$, where ∂R is the boundary of R, R is simply connected. For all $C^{\prime} \subset R$, $\oint_{C} f(z) d z=\oint_{C^{\prime}} f(z) d z=0$
Multiply connected region $f(z)$ is analytic in R. If there is a path $C \subset R$ such that the region surouded by the C contains a region R^{\prime}, where $f(z)$ is not analytic, the region R is multiply connected.

Application Consider a contour C and C^{\prime} which encircle the same region R^{\prime} and $C \not \subset R^{\prime}$ and $C^{\prime} \not \subset R^{\prime}$, where $f(z)$ is not analytic in R^{\prime} and $f(z)$ is analytic in $\left(R^{\prime}\right)^{c}$. Choose two very close points $A, B \in C$ and $A^{\prime}, B^{\prime} \in C$ and draw paths L from A to B and L^{\prime} from A^{\prime} to B^{\prime}. Let L and L^{\prime} approaches arbitrarily closely and $L \cap L^{\prime}=\emptyset$.

- Show that $\int_{A B} f(z) d z \rightarrow 0$ and $\int_{A^{\prime} B^{\prime}} f(z) d z \rightarrow 0$.
- Show that $\oint_{C} f(z) d z=\oint_{C-A B} f(z) d z$ and $\oint_{C^{\prime}} f(z) d z=\oint_{C^{\prime}-A^{\prime} B^{\prime}} f(z) d z$.
- Show that $\oint_{A A^{\prime}} f(z) d z=\oint_{B^{\prime} B} f(z) d z=0$.
- Draw a closed path in a simply connected region combining open curves passing $A, B, A^{\prime}, B^{\prime}$ along $C-A B, C^{\prime}-A^{\prime} B^{\prime}, L$, and $L^{\prime} \rightarrow-L$.

$$
\begin{aligned}
& \oint_{C+C^{\prime}+L-L} f(z) d z=\left[\int_{C}+\int_{-C^{\prime}}+\int_{L}+\int_{-L}\right] f(z) d z=0 \\
& \int_{C} f(z) d z-\int_{C^{\prime}} f(z) d z+\int_{L} f(z) d z-\int_{L} f(z) d z=0 \\
& \oint_{C} f(z) d z=\oint_{C^{\prime}} f(z) d z
\end{aligned}
$$

6.4 Cauchy's integral formula

If $f(z)$ is analytic in R within a boundary contour C

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z=\left\{\begin{array}{l}
f\left(z_{0}\right) \leftarrow \text { if } z_{0} \text { is enclosed by } C \\
0 \leftarrow \text { if } z_{0} \text { is not enclosed by } C
\end{array}\right.
$$

- Show that $\frac{1}{z^{2}+1}$ is analytic inside $\forall C$ which is parametrized as $C=\left\{z=r e^{i \theta} \mid r<1\right\}$. Therefore the region inside C is simply connected.
- Show that $\oint_{C} \frac{1}{z^{2}+1}=0 \quad \forall C$ which is parametrized as $C=\left\{z=r e^{i \theta} \mid r<1\right\}$.

If $f(z)$ is analytic in R within a boundary contour C

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z & =0 \leftarrow \frac{f(z)}{z-z_{0}} \text { is analytic inside } C_{1} \\
\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(z)}{z-z_{0}} d z & =\oint_{z=z_{0}+r e^{i \theta}} \frac{f(z)}{z-z_{0}} d z \\
& =\frac{1}{2 \pi i} \lim _{r \rightarrow 0} \int \frac{f\left(z_{0}+r e^{i \theta}\right)}{r e^{i \theta}} r e^{i \theta} i d \theta \\
& =\frac{1}{2 \pi i} \lim _{r \rightarrow 0} f\left(z_{0}\right) \int_{0}^{2 \pi} i d \theta=f\left(z_{0}\right)
\end{aligned}
$$

\boldsymbol{n}-th Derivatives If $f(z)$ is analytic in R within a boundary contour $C=\partial R$. $\forall w$ such that $w \in R$ and $w \notin C$ show that

$$
\begin{aligned}
& f(w)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-w} d z . \\
& f^{\prime}(w) \equiv \lim _{\delta \rightarrow 0} \frac{f(w+\delta)-f(w)}{\delta} \\
&= \lim _{\delta \rightarrow 0} \frac{1}{2 \pi i \delta}\left[\oint_{C} \frac{f(z)}{z-(w+\delta)} d z-\oint_{C} \frac{f(z)}{z-w} d z\right] \\
&= \lim _{\delta \rightarrow 0} \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{[z-(w+\delta)][z-w]} d z \\
&= \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-w)^{2}} d z .
\end{aligned}
$$

$f(z)$ is analytic on and within a closed contour C.

- Show that

$$
\oint_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=2 \pi i f^{\prime \prime}\left(z_{0}\right)
$$

- Show that

$$
f^{\prime \prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \quad \forall z_{0} \text { enclosed by } C
$$

- Therefore

$$
\oint_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \forall z_{0} \text { enclosed by } C .
$$

\boldsymbol{n}-th Derivatives $f(z)$ is analytic on and within a closed contour C. $f^{(n)}$ is the n-th derivative of $f(z)$.

- Check if

$$
\frac{0!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{1}} d z=f\left(z_{0}\right) .
$$

- Assume

$$
\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=f^{(n)}\left(z_{0}\right) .
$$

- Show that

$$
\frac{(n+1)!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+2}} d z=f^{(n+1)}\left(z_{0}\right) .
$$

- Hint: Show that

$$
f^{(n+1)}\left(z_{0}\right)=\lim _{\delta \rightarrow 0} \frac{f^{(n)}\left(z_{0}+\delta\right)-f^{(n)}\left(z_{0}\right)}{\delta}
$$

and use

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
$$

You must know $\left(1 / z^{n}\right)^{\prime}=-n / z^{n+1}$ for $z \neq 0$.

- Therefore, by mathematical induction, $\forall n \geq 0$

$$
\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=f^{(n)}\left(z_{0}\right) .
$$

6.4.7 Legendre polynomial Now we know that for any analytic function $f(z)$ within the contour C surrounding z_{0}

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Show that Legendre's polynomial $P_{n}(x)$ is expressed as

$$
\begin{aligned}
P_{n}(x) & =\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}=\frac{(-1)^{n}}{2^{n} n!} \frac{n!}{2 \pi i} \oint_{C} \frac{\left(1-z^{2}\right)^{n}}{(z-x)^{n+1}} d z \\
& =\frac{(-1)^{n}}{2^{n}} \cdot \frac{1}{2 \pi i} \oint_{C} \frac{\left(1-z^{2}\right)^{n}}{(z-x)^{n+1}} d z
\end{aligned}
$$

where the contour encloses x once in a positive sense. This is called Schläfli's integral representation for the $P_{n}(x)$.

Legendre's integral representation Choose the contour C as a cicle around x with radius $\sqrt{1-x^{2}}$ so that $z=x+i e^{i \phi} \sqrt{1-x^{2}}$, where $0<\phi<2 \pi$. Show that

- $d z=-\sqrt{1-x^{2}} e^{i \phi} d \phi=i(z-x) d \phi$.
- $z^{2}-1=2(z-x)\left(x+i \sqrt{1-x^{2}} \cos \phi\right)$.

$$
\begin{aligned}
P_{n}(x) & =\frac{1}{2^{n} \cdot 2 \pi i} \oint_{C} \frac{\left(z^{2}-1\right)^{n}}{(z-x)^{n+1}} d z \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(x+i \sqrt{1-x^{2}} \cos \phi\right)^{n} d \phi \\
P_{n}(\cos \theta) & =\frac{1}{\pi} \int_{0}^{\pi}(\cos \theta+i \sin \theta \cos \phi)^{n} d \phi
\end{aligned}
$$

This is called Legendre's integral representation for the $P_{n}(x)$.

Generating function for the Legendre's polynomial Change the integration variable into $t=\cos \theta+i \sin \theta \cos \phi$.

- Show that t runs from $e^{-i \theta}$ to $e^{i \theta}$ and

$$
d \phi=\frac{d t}{i \sin \theta \cos \theta}=\frac{d t}{i \sqrt{t^{2}-2 t \cos \theta+1}}
$$

- Show that

$$
P_{n}(\cos \theta)=\frac{1}{\pi i} \int_{e^{-i \theta}}^{e^{i \theta}} d z \frac{z^{n}}{\sqrt{z^{2}-2 z \cos \theta+1}} .
$$

- Next We will show that

$$
g(t, \cos \theta) \equiv \frac{1}{\sqrt{t^{2}-2 t \cos \theta+1}}=\sum_{n=0}^{\infty} t^{n} P_{n}(\cos \theta)
$$

This is called Legendre's integral representation for the $P_{n}(x)$.

Consider $-1<x<1,0<t<1$, and $z \in C=\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}$ so that C encloses x

- Show that the three points $-1, z, 1$ make a right triangle and the area is $\left|1-z^{2}\right| / 2=\operatorname{Im}(z)$.
- Show that $|z-x| \geq \operatorname{Im}(z)$ and therefore $\left|\frac{t\left(z^{2}-1\right)}{2(z-x)}\right|<1$.
- Using $P_{n}(x)=\frac{1}{2^{n} \cdot 2 \pi i} \oint_{C} \frac{\left(z^{2}-1\right)^{n}}{(z-x)^{n+1}} d z$ and above results, show that the following infinite series is convergent as

$$
\sum_{n=0}^{\infty} t^{n} P_{n}(x)=-\frac{1}{t \pi i} \oint_{C} \frac{d z}{\left(z-z_{+}\right)\left(z-z_{-}\right)}
$$

where $z_{ \pm}=\frac{1}{t}\left(1 \pm \sqrt{1-2 x t+t^{2}}\right)$.

- Show that only z_{-}is within the contour and the integral becomes

$$
g(t, x)=\sum_{n=0}^{\infty} t^{n} P_{n}(x)=\frac{1}{\sqrt{1-2 x t+t^{2}}}
$$

We have derived the closed form of the generating function for Legendre's polynomials.

Homework set 3: (due: Oct. 9, 2004)

1. Using the Schwarz inequality to prove $\left|\int_{C} f(z) d z\right| \leq\left|f_{\max }\right| L$, where $|f(z)| \leq\left|f_{\max }\right| \forall z \in C$ and L is the length of the path C. We will make use of this result frequently.
2. We learned that z^{*} is not analytic. We will find the integral of z^{*} may depend on the path. Show that $\int_{0}^{1+i} z^{*} d z$ depends on the path. a) Integrate along $C_{1}=t$ and then $C_{2}=1+i t$, where $0<t<1$. b) Integrate along $C_{1}=i t$ and then $C_{2}=t+i$, where $0<t<1$.
3. a) Show that $\oint_{C} \frac{d z}{z(1+z)}=0$ if C is $z=r e^{i \theta}, 0<\theta<2 \pi$ and $r<1$. b) Show that $\oint_{C} \frac{d z}{z(1+z)}=2 \pi i$ if C is $z=r e^{i \theta}, 0<\theta<2 \pi$ and $r<1$.
4. Show that
 differential equation

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} P_{\ell}(x)\right]+\ell(\ell+1) P_{\ell}(x)=0 .
$$

b) Replacing $x=\cos \theta$, show that the Legendre's equation is equivalent to

$$
-\frac{1}{\sin \theta} \frac{d}{d \theta}\left[\sin \theta \frac{d}{d \theta} P_{\ell}(\cos \theta)\right]=\ell(\ell+1) P_{\ell}(\cos \theta)
$$

c) Show that in the spherical coordinate system

$$
\begin{aligned}
\boldsymbol{\nabla} & =\hat{\boldsymbol{r}} \frac{\partial}{\partial r}+\hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}, \\
L_{z} & =-i \frac{\partial}{\partial \phi}, \\
\boldsymbol{L}^{2} & =-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial}{\partial \theta}\right]-\frac{1}{\sin ^{2} \theta} \frac{\partial}{\partial \phi^{2}} .
\end{aligned}
$$

and $P_{n}(\cos \theta)$ is the eigenfunction for the orbital angular momentum $j=\ell$ and $j_{z}=0$.
5. Prove Morera's Theorem: If a function $f(z)$ is continuous in a simply connected region R and $\oint_{C} f(z) d z=0 \forall$ closed contour C within R, then $f(z)$ is analytic throughout R.
6. Prove Cauchy's inequality: If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is analytic
and bounded, $|f(z)| \leq M$ on a circle of radius r about the origin, then

$$
\left|a_{n}\right| r^{n} \leq M
$$

gives upper bounds for the coefficients of its Taylor series expansion.
7. Prove Liouville's theorem: If $f(z)$ is analytic and bounded in the complex plain, it is a constant function.
8. Using Liouville's theorem, prove the fundamental theorem of algebra: Any poplynomial $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ with $n>0$ and $a_{n} \neq 0$ has n roots.

6.3 Laurent Expansion

Taylor Expansion If $f(z)$ is analytic inside the contour C

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{w-z}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)-\left(z-z_{0}\right)} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)\left[1-\frac{z-z_{0}}{w-z_{0}}\right]} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{\left(w-z_{0}\right)} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} d w \\
& =\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{n!} f^{(n)}\left(z_{0}\right)
\end{aligned}
$$

- Show that $\ln (1+z)=-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{n}}{n}$.
- Show that $\forall m \in R$ and $|z|<1$,

$$
\begin{aligned}
(1+z)^{m} & =1+m z+\frac{m(m-1)}{2 \cdot 1} z^{2}+\frac{m(m-1)(m-2)}{3 \cdot 2 \cdot 1} z^{2}+\cdots \\
& =\sum_{n=0}^{\infty}\binom{m}{n} z^{n}
\end{aligned}
$$

where $\binom{m}{n}$ is $\frac{m!(m-n)!}{n!}$ generalized into the real numbers.

Schwarz reflection principle

- Consider a complex function $g(z)=\left(z-x_{0}\right)^{n}$, where x_{0} and n are real numbers. Using binominal expansion generalized to real powers, show that $[g(z)]^{*}=\left(z^{*}-x_{0}\right)^{n}=g\left(z^{*}\right)$.
- Consider a function which is analytic around $x_{0} \in R$. Show that the Talyor expansion near the point $f(z)=\sum_{n=0}^{\infty}\left(z-x_{0}\right)^{n} f^{(n)}\left(x_{0}\right) / n!$ exists.
- Show that if the function is real if z is real, then $f^{(n)}\left(x_{0}\right)$ is real $\forall n$ and, therefore, $[f(z)]^{*}=f\left(z^{*}\right)$.

Using Schwarz reflection principle,

- Show that $\left[e^{z}\right]^{*}=e^{z^{*}}$.
- Show that $[\sin z]^{*}=\sin \left(z^{*}\right)$.
- Show that $[\ln (1+z)]^{*}=\ln \left(1+z^{*}\right)$.

Analytic continuation $(1+z)^{-1}$ is NOT analytic at $z=-1$.

- Show that the series expansion $(1+z)^{-1}=\sum_{n=0}^{\infty}(-z)^{n}=1-z+z^{2}-z^{3}+\cdots$ converges for $|z|<1$. Hint: Calculate $\sum_{n=0}^{N}(-1)^{n} z^{n}$ and take limit $n \rightarrow \infty$.
- Above expansion is around $z=0$. We know the function is analytic $\forall z \neq-1$. Let us expand the function around $z_{0} \neq-1$ as well as $z_{0} \neq 0$.

$$
\begin{aligned}
\frac{1}{1+z} & =\frac{1}{\left(1+z_{0}\right)+\left(z-z_{0}\right)}=\frac{1}{\left(1+z_{0}\right)\left[1+\frac{z-z_{0}}{1+z_{0}}\right]} \\
& =\frac{1}{1+z_{0}} \sum_{n=0}^{\infty}\left(-\frac{z-z_{0}}{1+z_{0}}\right)^{n}
\end{aligned}
$$

- Show the series converges if $\left|z-z_{0}\right|<\left|1+z_{0}\right|$.

Laurent expansion Even if $f(z)$ is singular at z_{0}, we can expand $f(z)$ in terms of $\left(z-z_{0}\right)^{n}$ in an analytic region between C_{1} and C_{2}, where $f(z)$ is not analytic in R^{\prime} such that $z_{0} \in R^{\prime}$ and C_{2} encloses R^{\prime}. A larger contour C_{1} encloses both R^{\prime} and C_{2}. If $f(z)$ is analytic in the region R between C_{1} and C_{2}.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The series is called Laurent series. Let us derive the explicit form of the series.
derivation Let us evaluate the integral S_{1} along the larger closed contour C_{1}. We choose $w \in C_{1}$ and $z \in R$ so that $\left|w-z_{0}\right|>\left|z-z_{0}\right| \rightarrow \frac{\left|z-z_{0}\right|}{\left|w-z_{0}\right|}<1$. Show that the integral is expressed as a convergent power series;

$$
\begin{aligned}
S_{1} & =\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)-\left(z-z_{0}\right)} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)\left[1-\frac{z-z_{0}}{w-z_{0}}\right]} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{\left(w-z_{0}\right)} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} d w \\
& =\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}} .
\end{aligned}
$$

Next, we evaluate the integral S_{2} along the smaller closed contour C_{2}. We choose $w \in C_{2}$ and $z \in R$ so that $\left|z-z_{0}\right|>\left|w-z_{0}\right| \rightarrow \frac{\left|w-z_{0}\right|}{\left|z-z_{0}\right|}<1$. Show that the integral is expressed as a convergent power series;

$$
\begin{aligned}
S_{2} & =\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{z-w}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(z-z_{0}\right)-\left(w-z_{0}\right)} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(z-z_{0}\right)\left[1-\frac{w-z_{0}}{z-z_{0}}\right]} \\
& =\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \oint_{C} \frac{\left(w-z_{0}\right)^{n-1}}{\left(z-z_{0}\right)^{n+1}} f(w) d w \\
& =\sum_{n=-1}^{-\infty}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}}
\end{aligned}
$$

- Show that the sum $S_{1}-S_{2}$ is the contour integral surrounding a simply connected region including z. Thus

$$
f(z)=S_{1}-S_{2}=\frac{1}{2 \pi i}\left[\oint_{C_{1}} \frac{f(w) d w}{w-z}-\oint_{C_{2}} \frac{f(w) d w}{w-z}\right] .
$$

- Therefore,

$$
f(z)=\sum_{n=-\infty}^{\infty}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}}
$$

where the contour C is again enclosing multiply connected region including z_{0} and between C_{1} and C_{2}.

Example 6.5.1: The function $1 /[z(1-z)]$ is not analytic at both $z=0$ and $z=1$. But the function is analytic elsewhere such as $0<|z|<1$. We want to find the Laurent expansion, for example, around $z=0$:

$$
f(z)=\frac{1}{z(1-z)}=\sum_{n=-\infty}^{\infty} a_{n}(z-0)^{n}
$$

Choosing the contour $C=\{w|0<|w|<1\}$,

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{1}{w(1-w)} \frac{d w}{(w-0)^{n+1}}=\frac{1}{2 \pi i} \oint_{C} \frac{d w}{w^{n+2}(1-w)} \\
& =\sum_{k=0}^{\infty} \frac{1}{2 \pi i} \oint_{C} w^{k} \frac{d w}{w^{n+2}}=\sum_{k=0}^{\infty} \frac{1}{2 \pi i} \oint_{C} \frac{d w}{w^{(n+1-k)+1}} \\
& =\sum_{k=0}^{\infty} \delta_{n+1, k}=\left\{\begin{array}{l}
1 \text { if } n \geq-1 \\
0 \text { if } n<-1
\end{array}\right. \\
f(z) & =\frac{1}{z}+1+z+z^{2}+\cdots
\end{aligned}
$$

Taylor or Laurent

$$
\begin{aligned}
f(z)= & \frac{1}{1-z} \\
\text { for } & |z|<1 \\
f(z)= & 1+z+z^{2}+z^{3}+\cdots=\sum_{n=0}^{\infty} z^{n} \\
\text { for } & |z|>1 \\
f(z)= & \frac{1}{1-z}=\frac{\frac{1}{z}}{\frac{1}{z}-1}=-\frac{1}{z}\left(\frac{1}{1-\frac{1}{z}}\right) \\
= & -\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}}=-\sum_{n=1}^{\infty} \frac{1}{z^{n}}
\end{aligned}
$$

Series expansion examples

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \text { for all } z \\
f(z) & =\frac{e^{z}}{z} \leftarrow \text { around } z=0 \\
& =\frac{1}{z} \sum_{n=0}^{\infty} \frac{z^{n}}{n!}=\frac{1}{z}+1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots \text { for all } z \neq 0 \\
f(z) & =e^{\frac{1}{z}} \leftarrow \text { around } z=\infty \\
& =\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots \text { for all } z \neq 0
\end{aligned}
$$

Example 6.5.2: Let us find the Laurent series of the function $e^{z} e^{1 / z}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$.

- Show that $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ and $e^{1 / z}=\sum_{m=0}^{\infty} \frac{1}{n!z^{m}}$.
- Show that $f(z)$ is analytic except for $z=0$ and $z \rightarrow \infty$.
- Using $f(z)=f(1 / z)$, show that $a_{-n}=a_{n}$.
- Show that a_{0} is finite and $a_{0}=\sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}$.
- Show that a_{k} is finite and $a_{k}=a_{-k}=\sum_{n=0}^{\infty} \frac{1}{n!(n+k)!}$.
- $e^{z} e^{1 / z}=\sum_{n=0}^{\infty}\left[\frac{1}{(n!)^{2}}+\sum_{k=1}^{\infty} \frac{1}{n!(n+k)!}\left(z^{k}+\frac{1}{z^{k}}\right)\right]$.
6.6 Mapping Consider a complex function
$f(z)=w=u(x, y)+i v(x, y), z=x+i y=r e^{i \theta}$.
$z_{0}=x_{0}+i y_{0}=r_{0} e^{i \theta_{0}}$.
- Show that the transform $w=z+z_{0}$ translates any geometrical object in z-space by z_{0}.
- Show that under the transformation $w=z_{0} z$ a circle of radius r in z-space is transformed into a circle with radius $\left|z_{0}\right| r$ and the phase is shifted by θ_{0}.
- Show that $w=\frac{1}{z}=\frac{1}{r} \cdot e^{i(-\theta)}$.
- Show that under the transformation $w=1 / z$ a disc of radius r in z-space is transformed into the outside of a disc with radius $1 / r$.

Inversion: Consider the inversion
$w=u+i v=\frac{1}{z}, \quad z=x+i y=r e^{i \theta}$.

- Show that if $x^{2}+y^{2}=r^{2}$, then $u^{2}+v^{2}=(1 / r)^{2}$.
- Using $u=x / r^{2}$ and $u^{2}+v^{2}=1 / r^{2}$, show that a vertical lint $x=x_{0}$ transforms into a cicle

$$
\left(u-\frac{1}{2 x_{0}}\right)^{2}+v^{2}=\left(\frac{1}{2 x_{0}}\right)^{2} .
$$

- Using $v=-y / r^{2}$ and $u^{2}+v^{2}=1 / r^{2}$, show that a horizontal line $y=y_{0}$ transforms into a cicle

$$
u^{2}+\left(v+\frac{1}{2 y_{0}}\right)^{2}=\left(\frac{1}{2 y_{0}}\right)^{2} .
$$

Using $z=r e^{i \theta}$, show the following

- Show that a circle $|z|=r$ transforms into a ellipsis under $w=u+i v=z \pm \frac{1}{z}$:

$$
\begin{gathered}
u+i v=\left(r \pm \frac{1}{r}\right) \cos \theta+i\left(r \mp \frac{1}{r}\right) \sin \theta \\
\frac{u^{2}}{\left(r \pm \frac{1}{r}\right)^{2}}+\frac{v^{2}}{\left(r \mp \frac{1}{r}\right)^{2}}=1 .
\end{gathered}
$$

- Show that into limit $|z| \rightarrow 1, w=z+\frac{1}{z} \rightarrow u+i 0$, where $-2<u<2$.
$f(z)=z^{2}: 2 \rightarrow 1$ Show the following properties of the transformation $f(z)=z^{2}$.

$$
\begin{aligned}
z= & x+i y=r e^{i \theta} \\
w= & \rho e^{i \phi}=z^{2}=r^{2} e^{i(2 \theta)} \\
& 0<\theta<\pi \rightarrow 0<\phi<2 \pi \\
& \pi<\theta<2 \pi \rightarrow 2 \pi<\phi<4 \pi \\
z_{0}^{2}= & w \rightarrow\left(z_{0} e^{i \pi}\right)^{2}=w, \text { too } \\
z^{2}= & (x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) \\
u= & x^{2}-y^{2} \\
v= & 2 x y
\end{aligned}
$$

$\boldsymbol{f}(\boldsymbol{z})=\sqrt{\boldsymbol{z}}: \mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ Show that there are two roots of \sqrt{z} for a single z :

$$
\begin{aligned}
z= & x+i y=r e^{i(\theta+2 k \pi)}, k=0,1,2, \cdots \\
w= & \rho e^{i \phi}=z^{1 / 2}=\sqrt{r} e^{i(\theta+2 k \pi) / 2} \\
\phi= & \frac{\theta}{2}, \frac{\theta}{2}+\pi \\
& \quad 0 \leq \theta<2 \pi \rightarrow \text { single }- \text { valued }
\end{aligned}
$$

Therefore, the function is multivalued unless we impose a branch cut.

$$
f(z)=e^{z}: \infty \rightarrow 1
$$

$$
\begin{aligned}
z= & x+i y=r e^{i(\theta+2 k \pi)}, k=0,1,2, \cdots \\
w= & e^{x+i y}=e^{x} e^{i y} \\
f(z+i 2 n \pi)= & f(z), n= \pm 1, \pm 2, \cdots \\
& \text { periodic }
\end{aligned}
$$

$f(z)=\ln z: 1 \rightarrow \infty$ Show that there are infinitely many values of $\ln z$ for a single z :

$$
\begin{aligned}
z= & x+i y=r e^{i(\theta+2 k \pi)}, k=0,1,2, \cdots \\
w= & \ln \left(r e^{i(\theta+2 n \pi)}\right)=\ln r+i 2 n \pi, n=0,1,2, \cdots \\
& \operatorname{cut} ;-\pi<\theta \leq+\pi \\
\rightarrow & \text { single }- \text { valued }
\end{aligned}
$$

Therefore, the function is multivalued unless we impose a branch cut.

Conformal mapping: Let us consider the mapping $w=z^{2}$.

- Show that $u=a$ and $v=b$, where a, b are real constants, transforms into $x^{2}+y^{2}=a$ and $2 x y=b$.
- Show that $u=a$ and $v=b$ are orthogonal.
- Show that the normal vector to $x^{2}+y^{2}=a$ is $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)=(2 x, 2 y)$.
- Show that the normal vector to $2 x y=b$ is $\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)=(2 y, 2 x)$.
- Show that the two tangent at a common point $z=x+i y$ are orthogonal.

We will see any pair of orthogonal curves are mapped into orthogonal curves if the mapping function is analytic.

Let us consider the mapping $w=f(z)=u(x, y)+i v(x, y)$. Choose two curves $u(x, y)=a$ and $v(x, y)=b$ passing (x, y) in the z-plain, where a and b are real constants.

- Show that the normal vector to $u(x, y)=a$ is $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$.
- Show that the normal vector to $v(x, y)=b$ is $\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)$.
- Show that the inner product of the two 2-dimensional normal vectors vanishes if $f(z)$ is analytic.

$$
\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}=0
$$

due to the Cauchy-Riemann condition of analyticity.

Consider an analytic function $w=f(z)$. We will verify that the mapping preserves the angle.

- Show that $d f(z) / d z$ exists and unique at a point $z=z_{0}$.
- Show that $\arg \left(\frac{d f(z)}{d z}\right)=\alpha$, where α is real and constant at $z=z_{0}$. Is $d f(z) / d z$ independent of the path approaching $z=z_{0}$?
- Show that $\arg [d f(z)]=\arg (d z)+\arg (\alpha)$.
- Choose two paths approaching $z=z_{0}, z_{0}+\epsilon e^{i \theta_{1}}$ and $z_{0}+\epsilon e^{i \theta_{2}}$, where θ_{1} and θ_{2} are constants and we vary $\epsilon \rightarrow 0 . d z$ for the two paths are $e^{i \theta_{1}} d \epsilon$ and $e^{i \theta_{2}} d \epsilon$. The relative angle between the two paths are $\theta_{1}-\theta_{2}$. Show that the corresponding path in the w-plain is $d f\left[z_{0}+\epsilon e^{i \theta_{1}}\right]-d f\left[z_{0}+\epsilon e^{i \theta_{2}}\right]=\theta_{1}-\theta_{2}$.

Consider a two semi-infinite plates crossing with an angle θ_{0} at the ends of their plains. Choose the cylindrical coordinate system where the edge is placed at the origin and the x-axis is placed on the plain and is normal to the edge.

- Show that the sector $0<\theta<\theta_{0}$ is transformed into a strip in the w-plain.
- Assume the electric potential is $V(\theta=0)=0$ and $V\left(\theta=\theta_{0}\right)=V_{0}$.
- Use the symmetry to show that the potential at angle θ is $V(\theta)=V_{0} \theta / \theta_{0}=\frac{V_{0}}{\theta_{0}} \operatorname{Im}(\ln z)$.
- Show that $w=U+i V=\frac{V_{0}}{\theta_{0}} \ln z$ is analytic and $\operatorname{Im}(w)=V$.
- Show that $E_{x}=-\frac{\partial V}{\partial x}$ and $E_{y}=-\frac{\partial V}{\partial y}$.
- Show that $\frac{d w}{d z}=-i\left(E_{x}-i E_{y}\right)$ and therefore $E_{x}=\operatorname{Im}\left(-\frac{d w}{d z}\right)$ and $E_{y}=\operatorname{Re}\left(-\frac{d w}{d z}\right)$.
- Differentiating the complex potential, find the electric field components

$$
\begin{aligned}
-\frac{d w}{d z} & =-\frac{V_{0}}{z \theta_{0}}=\frac{V_{0}}{\theta_{0}}\left(-\frac{x}{r^{2}}+i \frac{y}{r^{2}}\right) \\
E_{x} & =\frac{V_{0}}{z \theta_{0}} \frac{y}{r^{2}}=\frac{V_{0}}{\theta_{0}} \frac{\sin \theta}{r} \\
E_{y} & =-\frac{V_{0}}{z \theta_{0}} \frac{x}{r^{2}}=-\frac{V_{0}}{\theta_{0}} \frac{\cos \theta}{r}
\end{aligned}
$$

Homework set 4: (due: Oct. 16, 2004)

1. (6.5.3) Funtion $f(z)$ is analytic on and within the unit circle C. Also, $|f(z)|<1$ for $|z|<1$ and $f(0)=0$. Show that $|f(z)|<|z|$ for $|z| \leq 1$.
2. Show that the Laurent series
$e^{z} e^{1 / z}=\sum_{n=0}^{\infty}\left[\frac{1}{(n!)^{2}}+\sum_{k=1}^{\infty} \frac{1}{n!(n+k)!}\left(z^{k}+\frac{1}{z^{k}}\right)\right]$ is convergent $\forall z \neq 0$.
3. (6.5.8) Show that the Laurent expansion of $f(z)=\left(e^{z}-1\right)^{-1}$ about the origin is

$$
\begin{aligned}
f(z) & =\frac{1}{z}\left(\frac{z}{e^{z}-1}\right)=\frac{1}{z}\left(1+\frac{z}{2}+\frac{z^{2}}{6}+\cdots\right)^{-1} \\
& =\frac{1}{z}-\frac{1}{2}+\frac{z}{12}+\cdots
\end{aligned}
$$

4. (6.5.11)
(a) Given $f_{1}(z)=\int_{0}^{\infty} e^{-z t} d t$ (with real t), show that the domain in which $f_{1}(z)$ exists and it analytic is $\operatorname{Re}(z)>0$.
(b) Show that $f_{2}(z)=1 / z$ equals $f_{1}(z)$ over $\operatorname{Re}(z)>0$ and is therefore an analytic continuation of $f_{1}(z)$ over the entire z-plain except for $z=0$.
(c) Expand $1 / z=1 /[i+(z-i)]$ about the point $z=i$ to find $1 / z=-i \sum_{n=0}^{\infty} i^{n}(z-i)^{n}$ for $|z-i|<1$.
5. (6.6.2) a) Show that the mapping $w=\frac{z-1}{z+1}$ transforms the right half of the z-plain $(\operatorname{Re}(z)>0)$ into the unit disc $|w|<1$. b) Show that the mapping $w=\frac{z-i}{z+i}$ transforms the upper half of the z-plain $(\operatorname{Im}(z)<0)$ into the unit disc $|w|<1$.

Mid-term Exam:
Chapter 4 and 6
Oct. 18, 2004, Monday

Chapter 7 Complex Variable II

- We now know many properties of analytic functions.
- We extensively use Cauchy integral theorem to evaluate many important definite integrals.
- entire function: Functions such as z and e^{z} are analytic everywhere.
- singularity: Function such as $1 / z$ has sigularity at $z=0$. The function is not analytic at the singular point. The point is isolated because anywhere near the point the function is analytic.
- meromorphic function: a function is meromorphic if it has a finite number of singular points.

Poles: A series expansion near an isolated pole can be done using Laurent series method. Consider a Laurent series exapnsion about z_{0}.

$$
\begin{aligned}
f(z) & =\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \\
& =a_{0}+\sum_{n=1}^{\infty}\left[a_{n}\left(z-z_{0}\right)^{n}+\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}\right] \\
\frac{a_{-n}}{\left(z-z_{0}\right)^{n}} & =\text { pole of order } n \\
a_{-1} & =\text { Residue }
\end{aligned}
$$

Essential singularity: If a series has a pole of infinite order, the function has essential singularity at the point. $e^{1 / z}$ as essential singularity at $z=0$. Laurent series exapnsion about $|z|=\infty$.
$e^{1 / z}=\sum_{k=0}^{\infty} \frac{1}{n!z^{n}}$ poles at $z=0$ for all n
$a_{-n}=\frac{1}{n!}$, pole of any order $n=1,2, \cdots \rightarrow$ essential singularity

The real function $\sin x$ is bounded. However, $\sin z$ also has an essential singularity at $z \rightarrow \infty\left(\frac{1}{z}=t \rightarrow 0\right)$;

$$
\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!t^{2 n+1}}
$$

Show that $\sin z=\sin x \cosh y+i \cos x \sinh y$ and that $\sin z$ is not bounded as $\operatorname{Im}(z) \rightarrow \pm \infty$.

Branch cut

- Show that $\ln z=\ln r+i \theta$ is single valued only if we impose a branch cut.
- Show that the cut of $\operatorname{Re} x<0$ and $y=0$ is a choice and the answer has the same limiting value as z approaches the positive real axis. $(\operatorname{Re} x>0$ and $y=0)$
- Show that $z=e^{\ln z}$ and $\ln e^{z}$ is not always equal to z.
- Show that $z^{a}=r^{a} e^{i a \theta}$ is multivalued unless we impose a cut.

$$
e^{i a 2 \pi} \neq e^{i 0}
$$

unless $a=$ integer. The cut must pass the branch point $z=0$.

Functions with 2 branch points

$$
\begin{aligned}
\left(z^{2}-1\right)^{1 / 2}= & (z+1)^{1 / 2}(z-1)^{1 / 2} \\
\text { if } & z=x,-1<x<1 \\
\left(z^{2}-1\right)^{1 / 2}= & i \sqrt{1-x^{2}},-i \sqrt{1-x^{2}}: \text { double } \\
\rightarrow & \text { branch points are } z= \pm 1 \\
\rightarrow & \text { need a common branch cut }
\end{aligned}
$$

$$
\begin{aligned}
& z=x,-1<x<1 \\
\left(z^{2}-1\right)^{1 / 2} & =\sqrt{r_{+} r_{-}} e^{\frac{i}{2}\left(\theta_{+}+\theta_{-}\right)} \\
z-1 & =r_{+} e^{i \theta_{+}},-\pi<\theta_{+}<\pi \\
z+1 & =r_{-} e^{i \theta_{-}}, 0<\theta_{-}<2 \pi \\
& \rightarrow-\frac{\pi}{2}<\frac{1}{2}\left(\theta_{+}+\theta_{-}\right)<\frac{3 \pi}{2} \rightarrow \text { single }- \text { valued }
\end{aligned}
$$

Uniqueness Theorem for power series(Sec. 5.7): Assume there are two series expansions of a function

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}, \quad-R_{a}<x<R_{a} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n}, \quad-R_{b}<x<R_{b}
\end{aligned}
$$

with overlapping intervals of convergence, including the origin.

- Substituting $x=0$, show that $a_{0}=b_{0}$.
- Differentiating both sides once and substituting $x=0$, show that $a_{1}=b_{1}$. Using mathematical induction, show that $a_{n}=b_{n}$ for all n. Therefore, Talyor expansion is unique.

Consider a function $f(z)$ having an order- n pole at $z=z_{0}$. One can expand $f(z)$ around $z=z_{0}$ in terms of Laurent series expansion. $f(z)=\sum_{k=-n}^{\infty} a_{k} z^{k}, \quad a_{k}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{k+1}}$, where the contour C is enclosing z_{0}.

- Show that $\left(z-z_{0}\right)^{n} f(z)=\left(z-z_{0}\right)^{n-1}\left[a_{-1}+o\left(z-z_{0}\right)\right]$, where $o(0)=0$.
- Show that $\frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n-1}=(n-1)$! and $\left[\frac{d^{n-1}}{d o\left(z-z_{0}\right)}\right]_{z=z_{0}}=0$.
- Show that the residue a_{-1} is then

$$
a_{-1}=\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[\left(z-z_{0}\right)^{n} f(z)\right]_{z=z_{0}}
$$

Residue Theorem: Assume $f(z)$ has poles only at $z=z_{0}$.

$$
\begin{aligned}
f(z) & =\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad a_{-1}=\text { residue } \\
\oint_{C} f(z) d z & =\left\{\begin{array}{l}
2 \pi i a_{-1}, z_{0} \text { is inside } C \\
0, z_{0} \text { is outside } C
\end{array}\right.
\end{aligned}
$$

Assume $f(z)$ has poles at $z=z_{1}, z_{2}, \cdots$ as

$$
f(z)=\sum_{n=-\infty}^{\infty}\left[\left(a_{1}\right)_{n}\left(z-z_{1}\right)^{n}+\left(a_{k}\right)_{n}\left(z-z_{2}\right)^{n}+\cdots\right] .
$$

- Show that $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{i}\right)^{n}$ is analytic for all $z_{j} \neq z_{i}$.
- Show if a contour encloses poles z_{1} through z_{m}, show that

$$
\oint_{C} f(z) d z=2 \pi i\left[\left(a_{1}\right)_{-1}+\left(a_{2}\right)_{-1}+\cdots+\left(a_{k}\right)_{-1}\right] .
$$

Calulate the residues

$$
\begin{aligned}
& f(z)=\frac{1}{z-i} \rightarrow \operatorname{Residue}(z=i)=1 \\
& f(z)=\frac{1}{z^{2}-1}=\frac{1}{(z+1)(z-1)} \\
& a_{-1}(z=1)=\frac{1}{(1+1)}=\frac{1}{2}, \quad a_{-1}(z=-1)=\frac{1}{(-1-1)}=-\frac{1}{2}
\end{aligned}
$$

Find the residue of the following function at $z=0$.

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}(z-1)} \rightarrow-\frac{1}{z^{2}}\left(1+z+z^{2}+\cdots\right)=-\frac{1}{z^{2}}-\frac{1}{z}-\cdots \\
\operatorname{Res}(0) & =\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[\left(z-z_{0}\right)^{n} f(z)\right]_{z=z_{0}} \leftarrow n=2, z_{0}=0 \\
& =\left[-\frac{1}{(z-1)^{2}}\right]_{z=1}=-1
\end{aligned}
$$

Example 7.2.1: Let us evaluate the definite integral

$$
I=\int_{0}^{2 \pi} \frac{d \theta}{1+\epsilon \cos \theta},|\epsilon|<1
$$

- Using the following change of varibale,

$$
\begin{aligned}
z & =e^{i \theta}, d z=i e^{i \theta} d \theta \rightarrow d \theta=-i \frac{d z}{z} \\
1+\epsilon \cos \theta & =1+\epsilon \frac{1}{2}\left(z+\frac{1}{z}\right)=\frac{\epsilon}{2 z}\left(z^{2}+\frac{2 z}{\epsilon}+1\right)
\end{aligned}
$$

show that the integral can be expressed as a contour integral over a unit circle as

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \frac{d \theta}{1+\epsilon \cos \theta}=\oint_{C}\left(-i \frac{d z}{z}\right) \frac{2 z}{\epsilon\left(z-z_{+}\right)\left(z-z_{-}\right)} \\
& =\frac{-2 i}{\epsilon} \oint_{C} \frac{d z}{\left(z-z_{+}\right)\left(z-z_{-}\right)} \\
z_{ \pm} & =-\frac{1}{\epsilon}\left(1 \pm \sqrt{1-\epsilon^{2}}\right), \quad z_{+}-z_{-}=\frac{2}{\epsilon} \sqrt{1-\epsilon^{2}}
\end{aligned}
$$

- Show that $\left|z_{+}\right|<1$ and $z_{-}<-1$; only z_{+}is enclosed by the contour of the unit circle C.
- Show that the residue for $\left[\left(z-z_{-}\right)\left(z-z_{+}\right)\right]^{-1}$ at $z=z_{+}$is

$$
\frac{1}{z_{+}-z_{-}}=\frac{\epsilon}{2 \sqrt{1-\epsilon^{2}}} .
$$

- Finally

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \frac{d \theta}{1+\epsilon \cos \theta},|\epsilon|<1 \\
& =\frac{-2 i}{\epsilon} \frac{2 \pi i}{z_{+}-z_{-}}=\frac{-2 i}{\epsilon} 2 \pi i \frac{\epsilon}{2 \sqrt{1-\epsilon^{2}}}=\frac{2 \pi}{\sqrt{1-\epsilon^{2}}}
\end{aligned}
$$

Example 7.2.2: Let us evaluate the definite integral of a real variable

$$
I=\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}
$$

using the complex contour integral technique.

- Show that $I=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d z}{1+z^{2}}$, where $z=x+i 0$.
- Let us take a contour C made of C_{1}, from $-R+i 0$ to $R+i 0$, and C_{2} along $R e^{i \theta}$, where $0<\theta<\pi$. Show that

$$
J=\int_{C} \frac{d z}{z^{2}+1}=\int_{C} \frac{d z}{(z+i)(z-i)}=I+\int_{C_{2}} \frac{d z}{z^{2}+1} .
$$

- Show that $z=i$ is the only pole enclosed by C and its residue is

$$
a_{-1}(z=i)=\frac{1}{2 i} \rightarrow J=2 \pi i \times a_{-1}(z=i)=\pi
$$

- Show that the integral along the large semi-circle C_{2} is reduced into

$$
\int_{C_{2}} \frac{d z}{z^{2}+1}=\int_{\theta=0}^{2 \pi} \frac{d\left(R e^{i \theta}\right)}{1+\left(R e^{i \theta}\right)^{2}}=\operatorname{Rie}^{i \theta} \int_{0}^{2 \pi} \frac{d \theta}{1+R^{2} e^{2 i \theta}}
$$

- Using $\left|\int f(z) d z\right| \leq\left|f_{\max }\right| L$, where $\left|f_{\max }\right|$ is the maxmum value of the $|f(z)|$ along the path and L is the length of the path, show that

$$
\int_{C_{2}} \frac{d z}{z^{2}+1} \leq \frac{2 \pi}{R} \rightarrow 0 \text { as } R \rightarrow \infty
$$

- Therefore

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\pi, \quad \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}
$$

Example 7.2.4: Let us evaluate the definite integral

$$
I=\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=\operatorname{Im} \int_{-\infty}^{\infty} \frac{e^{i z}}{z} d z
$$

- Take the contour $C=[-R+i 0 \rightarrow-\delta+i 0]$ $+\left[C_{1}: \delta e^{i \theta}, \theta: \pi \rightarrow 0\right]+[-R+i 0 \rightarrow-\delta+i 0]$ $+\left[C_{2}: R e^{i \theta}, \theta: 0 \rightarrow \pi\right]$.
- Show that the function $e^{i z} / z$ is analytic in the region enclosed by the contour C. Therefore,

$$
\oint_{C} \frac{e^{i z}}{z} d z=0
$$

- Show that in the limit $\delta \rightarrow 0$ the integral over the semi-circle C_{1} becomes

$$
\int_{C_{1}} \frac{e^{i z}}{z} d z=(\pi i)_{\text {half circle }}(-1)_{\text {clockwise }}=-\pi i
$$

note that the path is in the negative sense.

- Show that in the limit $R \rightarrow \infty$ the integral over the large semi-circle C_{2} vanishes

$$
\begin{aligned}
\left|\int_{C_{2}} \frac{e^{i z}}{z} d z\right| & \leq\left|i \int_{0}^{\pi} e^{i R \cos \theta-R \sin \theta} d \theta\right| \leftarrow z=R e^{i \theta}, \frac{d z}{z}=i d \theta \\
& =\int_{0}^{\pi} e^{-R \sin \theta} d \theta=2 \int_{0}^{\frac{\pi}{2}} e^{-R \sin \theta} d \theta \\
& \leq 2 \int_{0}^{\frac{\pi}{2}} e^{-R \frac{2 \theta}{\pi}} d \theta=\frac{\pi}{R}\left(1-e^{-R}\right) \rightarrow 0 \text { as } R \rightarrow 0 .
\end{aligned}
$$

- Show that

$$
\oint_{C} \frac{e^{i z}}{z}=i \pi=\int_{-R}^{-\delta} \frac{e^{i x}}{x}+\int_{\delta}^{R} \frac{e^{i x}}{x}
$$

- Show that

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \int_{-\delta}^{\delta} \frac{\sin x}{x} d x & =\lim _{\delta \rightarrow 0} \int_{-\delta}^{\delta} \frac{x+o\left(x^{3}\right)}{x} d x \\
& =\lim _{\delta \rightarrow 0} \int_{-\delta}^{\delta}\left(1+o\left(x^{2}\right)+\cdots\right) d x \\
& \rightarrow \lim _{\delta \rightarrow 0}\left[2 \delta+o\left(\delta^{3}\right)\right] \rightarrow 0
\end{aligned}
$$

- Show that

$$
\begin{aligned}
& \oint_{C} \frac{\cos z}{z}=0, \quad \oint_{C} \frac{\sin z}{z}=\pi \\
& \int_{0}^{\infty} \frac{\sin z}{z}=\int_{-\infty}^{0} \frac{\sin z}{z}=\frac{\pi}{2} \\
& \int_{-\infty}^{\infty} \frac{\sin z}{z}=\pi
\end{aligned}
$$

(7.2.11): Let us use the same method to calculate the integral

$$
I=\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

- Show that the integral can be reparametrized as

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x & =\int_{-\infty}^{\infty} \frac{1-\cos 2 x}{2 x^{2}} d x=\operatorname{Re} \int_{-\infty}^{\infty} \frac{1-e^{i 2 z}}{2 z^{2}} d z \\
\text { Residue }(0) & =-\frac{2 i}{2}=-i \\
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x & =\pi \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
\end{aligned}
$$

This integral appears when we derive Fermi's Golden Rule. See time-dependent perturbation theory in quantum mechanics.

Feynman propagator $\left(\epsilon \rightarrow 0^{+}, \omega_{0}>0\right)$

$$
\begin{aligned}
i \Delta_{F}(t) & =i \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{e^{-i \omega t}}{\omega^{2}-\omega_{0}^{2}+i \epsilon} \\
& =i \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{e^{-i \omega t}}{\left(\omega-\omega_{0}+i \epsilon\right)\left(\omega+\omega_{0}-i \epsilon\right)}
\end{aligned}
$$

closing C : $t>0 \rightarrow$ clockw., $t<0 \rightarrow$ counterclockw.

$$
\begin{aligned}
\operatorname{Res}\left(\omega_{0}\right) & =\frac{e^{-i \omega_{0} t}}{2 \omega_{0}}, \operatorname{Res}\left(-\omega_{0}\right)=\frac{e^{+i \omega_{0} t}}{-2 \omega_{0}} \\
i \Delta_{F}(t) & =\frac{i(2 \pi i)}{2 \pi}\left[(-1)_{\text {c.clockw. }} \frac{\theta(t) e^{-i \omega_{0} t}}{2 \omega_{0}}+(+1)_{\text {clockw }} \frac{\theta(-t) e^{i \omega_{0} t}}{-2 \omega_{0}}\right] \\
& =\frac{1}{2 \omega_{0}}\left[\theta(t) e^{-i \omega_{0} t}+\theta(-t) e^{i \omega_{0} t}\right]
\end{aligned}
$$

Mittag-Leffler Theorem: $f(z)$ has poles z_{1}, \cdots, z_{n} inside C_{n} (center $0)$. $\left|f\left(z_{n}\right)\right| / R_{n} \rightarrow 0$ as $R_{n} \rightarrow \infty$ (bounded). $z \neq z_{i}, 0, C_{n}$. $\operatorname{Res}\left(z_{i}\right)=b_{i}$.

$$
\begin{aligned}
I_{n}(z) & =\frac{1}{2 \pi i} \int_{C_{n}} \frac{f(w)}{w(w-z)} d w \leftarrow \text { poles }: z_{i}, 0, w \\
& =\sum \text { Res }=\sum_{m=1}^{n} \frac{b_{m}}{z_{m}\left(z_{m}-z\right)}+\frac{f(z)-f(0)}{z} \\
\left|I_{n}\right| & \leq \frac{2 \pi R_{n}}{2 \pi} \frac{|f(w)|_{\max }}{R_{n}\left(R_{n}-|z|\right)} \rightarrow 0, \text { as } R_{n} \rightarrow \infty\left(R_{n} \gg|z|\right) \\
f(z)-f(0) & =\sum_{m=1}^{\infty} \frac{z b_{m}}{z_{m}\left(z-z_{m}\right)}=\sum_{m=1}^{\infty} b_{m}\left[\frac{1}{z-z_{m}}+\frac{1}{z_{m}}\right]
\end{aligned}
$$

Example 7.2.7 Mittag-Leffler Theorem application: $f(z)=\pi \cot \pi z-\frac{1}{z}$ has poles $z=n, n= \pm 1, \pm 2 \cdots$.

$$
\begin{aligned}
f(0) & =\lim _{z \rightarrow 0}\left(\frac{\pi \cos \pi z}{\sin \pi z}-\frac{1}{z}\right)=0 \\
b_{n} & =\operatorname{Res}(n)=\left[\frac{\pi \cos \pi z}{(\sin \pi z)^{\prime}}\right]_{z=n}=\frac{\pi \cos n \pi}{\pi \cos n \pi}=1 \\
f(z) & =\sum_{n=1}^{\infty}\left[\frac{1}{z-n}+\frac{1}{n}+\frac{1}{z-(-n)}+\frac{1}{(-n)}\right] \\
& =\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
\end{aligned}
$$

Weierstrass' Factorization Formula : $\frac{f^{\prime}(z)}{f(z)}, f(z)=\left(z-z_{n}\right) g(z)$, $g(z)$ is analytic and $g\left(z_{n}\right) \neq 0$. If Mittag-Leffler Theorem is
applicable to $\frac{f^{\prime}(z)}{f(z)}$,

$$
\begin{aligned}
\frac{f^{\prime}(z)}{f(z)} & =\frac{\left[\left(z-z_{n}\right) g(z)\right]^{\prime}}{\left(z-z_{n}\right) g(z)}=\frac{1}{z-z_{n}}+\frac{g^{\prime}(z)}{g(z)} \\
\frac{f^{\prime}(z)}{f(z)} & =\frac{f^{\prime}(0)}{f(0)}+\sum_{n=1}^{\infty}\left[\frac{1}{z-z_{n}}+\frac{1}{z_{n}}\right] \text { (Mittag - Leffler) } \\
\ln \frac{f(z)}{f(0)} & =\ln f(z)-\ln f(0)=\int_{f(0)}^{f(z)} \frac{d f(w)}{f(w)}=\int_{0}^{z} \frac{f^{\prime}(w)}{f(w)} d w \\
& =\frac{z f^{\prime}(0)}{f(0)}+\sum_{n=1}^{\infty}\left[\ln \left(\frac{z-z_{n}}{-z_{n}}\right)+\frac{z}{z_{n}}\right] \\
f(z) & =f(0) e^{\frac{z f^{\prime}(0)}{f(0)}} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) e^{\frac{z}{z_{n}}}
\end{aligned}
$$

Weierstrass' Factorization Formula Application:

$$
\begin{aligned}
f(z) & =f(0) e^{\frac{z f^{\prime}(0)}{f(0)}} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) e^{\frac{z}{z n}} \\
f(z) & =\frac{\sin z}{z}=1-\frac{z^{2}}{3}+\cdots, f(0)=1, f^{\prime}(0)=0 \\
\frac{\sin z}{z} & =\prod_{n \neq 0, n=-\infty}^{\infty}\left(1-\frac{z}{n \pi}\right) e^{\frac{z}{n \pi}}=\prod_{n=1}^{\infty}\left(1-\frac{z}{n \pi}\right)\left(1+\frac{z}{n \pi}\right) e^{\frac{z}{n \pi}-\frac{z}{n \pi}} \\
& =\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
\end{aligned}
$$

Weierstrass' Factorization Formula Application:

$$
\begin{aligned}
f(z) & =f(0) e^{\frac{z f^{\prime}(0)}{f(0)}} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) e^{\frac{z}{z_{n}}} \\
f(z) & =\cos z=1-\frac{z^{2}}{2}+\cdots, f(0)=1, f^{\prime}(0)=0 \\
\cos z & =\prod_{n=1}^{\infty}\left[1-\frac{z}{\left(n-\frac{1}{2}\right) \pi}\right] e^{\frac{z}{\left(n-\frac{1}{2}\right) \pi}}\left[1+\frac{z}{\left(n-\frac{1}{2}\right) \pi}\right] e^{-\frac{z}{\left(n-\frac{1}{2}\right) \pi}} \\
& =\prod_{n=1}^{\infty}\left[1-\frac{z^{2}}{\left(n-\frac{1}{2}\right)^{2} \pi^{2}}\right]
\end{aligned}
$$

Example 7.2.5) Bessel funtion

$$
\begin{aligned}
g(x, t) & =e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} \\
J_{n}(x) & =\frac{1}{2 \pi i} \oint_{C} \frac{e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}}{t^{n+1}} d t \\
& \rightarrow \text { Laurent coefficient } \\
C & =r e^{i \theta}, \text { for any integer } n
\end{aligned}
$$

Homework set 4: (due: Oct. 16, 2004)

1. (7.1.2) There is a function of the form

$$
f(z)=\frac{f_{1}(z)}{f_{2}(z)}
$$

where $f_{i}(z)$'s are analytic, $f_{2}\left(z_{0}\right)=0, f_{1}\left(z_{0}\right) \neq 0$, and $f_{2}^{\prime}\left(z_{0}\right) \neq 0$. Show that $f(z)$ has a pole of order 1 at $z=z_{0}$. Show that the residue a_{-1} for the function at $z=z_{0}$ is

$$
a_{-1}=\frac{f_{1}\left(z_{0}\right)}{f_{2}^{\prime}\left(z_{0}\right)} .
$$

2. Using above result show that $a_{-1}=-\frac{i}{2}$ at $z=i$ if $f(z)=\frac{1}{z^{2}+1}$.
