Introduction to Dirac Equation II

Contents
1.Review of Dirac Equation
2.Free Motion of Dirac Particle

- 15. Nov. 2004. Kookhee Han

1. Review of Dirac Equation

$i \hbar \frac{\partial \psi}{\partial \mathrm{t}}=\left(-\mathrm{i} \hbar c \hat{\alpha}_{\mathrm{k}} \nabla_{\mathrm{k}}+\hat{\beta} \mathrm{mc}^{2}\right) \psi \equiv \hat{\mathrm{H}} \psi$

1.1 K-G Eq. Compatiblity

* Correct energy-momentum relation for a relativistic free ptl. $E^{2}=p^{2} c^{2}+m_{0}^{2} p^{4}$
\rightarrow satisfy K-G Equation : $-\hbar^{2} \frac{\partial^{2} \psi}{\partial^{2} t}=\left(-\hbar^{2} c^{2} \nabla^{2}+m_{0}^{2} c^{4}\right) \psi$
$\star \hat{\alpha}, \hat{\beta}$ should be hermetian. i.e $\hat{\alpha}_{i}^{+}=\hat{\alpha}_{i}, \hat{\beta}_{i}^{+}=\hat{\beta}_{i}$
$==>$ Find Out $\hat{\alpha}_{k}, \hat{\beta}$

$$
\begin{array}{ll}
\hat{\alpha}_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) & \hat{\alpha}_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right) \\
\hat{\alpha}_{3}=\left|\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right| & \hat{\beta}=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right|
\end{array}
$$

1.2 Continuity Equation

$\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{j}=0$
where $\rho=\psi \psi^{+}=\sum_{i=1}^{4} \psi_{i}^{*} \psi_{i}, \quad \vec{j}=c \psi^{+} \hat{\alpha} \psi$
1.3Lorentz Covariance

2.Free Motion of Dirac Particle

$$
\begin{aligned}
i \hbar \frac{\partial \psi}{\partial t} & =\hat{H} \psi \\
& =\left(c \hat{\alpha} \cdot \hat{p}+m_{0} c^{2} \hat{\beta}\right) \psi \\
& =\left(-i \hbar c \nabla \hat{\alpha}+m_{0} c^{2} \hat{\beta}\right) \psi
\end{aligned}
$$

* Stationary State : $\psi(x, t)=\psi(x) e^{\frac{\epsilon t}{\hbar \hbar}}$

Let's try 4 components spinor into two 2-component spinor ϕ, χ
$==>\quad \psi=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4}\end{array}\left|=\left|\begin{array}{c}\phi \\ \chi\end{array}\right|\right.\right.$ where $\quad \phi=\binom{\psi_{1}}{\psi_{2}}, \quad \chi=\binom{\psi_{3}}{\psi_{4}}$

$$
\begin{aligned}
&=\Rightarrow \quad \epsilon\binom{\phi}{\chi}=c\left(\begin{array}{ll}
0 & \hat{\sigma} \\
\hat{\sigma} & 0
\end{array}\right) \cdot \overrightarrow{\mathrm{p}}\binom{\phi}{\chi}+\mathrm{m}_{0}^{2} c^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\phi}{\chi} \\
& \text { or } \\
& \epsilon \phi \\
&=c \vec{\sigma} \cdot \overrightarrow{\mathrm{p}} \chi+\mathrm{m}_{0} c^{2} \phi, \\
& \epsilon X=c \vec{\sigma} \cdot \overrightarrow{\mathrm{p}} \phi-\mathrm{m}_{0} c^{2} \chi
\end{aligned}
$$

* with definite momentum $\mathbf{p},\binom{\phi}{\chi}=\binom{\phi_{0}}{\chi_{0}} e^{\frac{i}{\hbar} \vec{p} \cdot \vec{x}}$

$$
==>\begin{aligned}
& \left(\epsilon-m_{0} c^{2}\right) \mid \phi_{0}-c \vec{\sigma} \cdot \overrightarrow{\mathrm{p}} \chi_{0}=0, \\
& -c \vec{\sigma} \cdot \overrightarrow{\mathrm{p}} \phi_{0}+\left(\epsilon+\mathrm{m}_{0} c^{2}\right) \mid \chi_{0}=0
\end{aligned}
$$

: above equation has non-trivial solution only for

$$
\left|\begin{array}{cc}
\left(\epsilon-m_{0} c^{2}\right) \mid & -c \vec{\sigma} \cdot p \\
-c \vec{\sigma} \cdot \vec{p} & \left(\epsilon+m_{0} c^{2}\right) ı
\end{array}\right|=0
$$

$==>\left(\epsilon^{2}-\mathrm{m}_{0}^{2} \mathrm{c}^{4}\right) \mathrm{l}-\mathrm{c}^{2}(\vec{\sigma} \cdot \overrightarrow{\mathrm{p}})(\vec{\sigma} \cdot \overrightarrow{\mathrm{p}})=0$
$==>\epsilon^{2}=m_{0}^{2} c^{4}+c^{2} p^{2}$
$\Rightarrow \quad \epsilon= \pm E_{p}, \quad E_{p}=+c \sqrt{p^{2}+m_{0}^{2} c^{2}}$
$==>\quad x_{0}=\frac{c(\hat{\sigma} \cdot \hat{p})}{m_{0} \mathrm{c}^{2}+\epsilon} \phi_{0}$ for fixed ϵ

$$
\Psi_{p \lambda}=N\left(\frac{c(\vec{\sigma} \cdot \vec{p})}{m_{0} c^{2}+\lambda E_{p}} U\right) \frac{\exp \left[i\left(\vec{p} \cdot \vec{x}-\lambda E_{p} t\right) / \hbar\right]}{\sqrt{2 \pi \hbar^{3}}}
$$

$==>$ where normalization factor N determined by

$$
\int \Psi^{+p \lambda}(x, t) \Psi_{p^{\prime} \lambda^{\prime}}(x, t) d^{3} x=\delta_{\lambda \lambda^{\prime}} \delta\left(p-p^{\prime}\right)
$$

$\Rightarrow N=\sqrt{\frac{\left(m_{0} c^{2}+\lambda E_{p}\right)}{2 \lambda E_{p}}}$
$==>\quad \epsilon=\lambda E$ with λ : eigen value of ± 1

