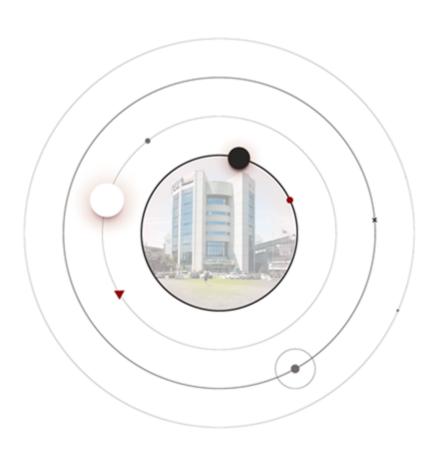
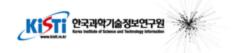


GSDC Promoting Science


대용량데이터허브센터

2021. 03. 24. 공 병 윤



- GSDC 소개
- 분산 파일 시스템
- 작업 분산 처리 시스템
- 인공 지능 관련 분야

GSDC 소개

GSDC(Global Science experimental Data hub Center)

선진연구소와

국제협력

(CERN)대용량 데이터 1년 CD 20Km

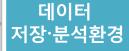
글로벌

대용량

고부가가치 대형연구시설장비

허브센터

(국내) 기초과학 데이터 분석 오픈플랫폼 제공



데이터 집약형 기초연구를 위한 데이터 공유 분석 IT인프라(HW, SW) 구축 및 서비스

프로세스

대형 연구 장비 구축

수행주체

- CERN(유럽)
- ·LIGO (미국)
- KEK (일본)
- KBSI (한국)
- 실험시설보유기관
- CERN(유럽)
- ·LIGO (미국)
- KEK (일본)
- ・KBSI (한국)

• 실험시설보유기관

- KISTI-GSDC
- CERN
- 실험커뮤니티(대학)
- CERN
- LIGO
- 대학
- 연구기관 등

Data-Intensive

Research

CMS

LIGO

IRENO

Data Provider

국내외 고부가가치 대형연구시설장비

Data Computing for Basic Science as a Service

Requirements by experiments/community > **Data Computing Research Environments**

APIs 🦳

System Automation

Identity

/Policy

Mgmt.

Data Management

- Transfer
- Movement
- Metadata
- Access ctrl.
- Archiving

Resources **Provisioning**

- Server (Container.
- VM, Baremetal)
- Storage (Block, Object, File)
- Network

Data **Analysis**

- Batch
- Parallel/Dist.
- Streamline
- · In-memory
- DeepLearning

Monitoring

ALICE

포항가속기연구소

핵심 연구 커뮤니티

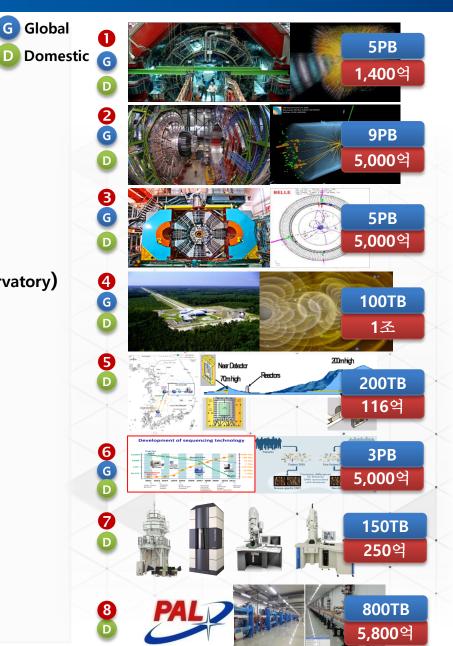
High Energy Physics

1. ALICE(A Large Ion Collider Experiment)

- 빅뱅을 재현하여 우주 초기 물질 상태 연구
- 40개국, 175개 기관, 2,000명 참여 (국내 40여명)
- 2. CMS(Compact Muon Solenoid)
 - 새로운 물리현상 탐구 (힉스 입자 입증)
 - 55개국, 232개 기관, 4,800명 참여 (국내 110여명)
- 3. Bellell(KEK)
 - B 중간자 희귀 붕괴현상 등에 대한 연구
 - 25개국, 107개 기관, 800명 참여 (국내 40여명)
- 4. LIGO(Laser Interferometer Gravitational Wave Observatory)
 - 중력파를 지상에서 검출하는 실험
 - 18개국, 109개 기관, 1,300명 참여 (국내 40여명)

Particle Physics

Medical Science


5. RENO(Reactor Experiment for Neutrino Oscillation)

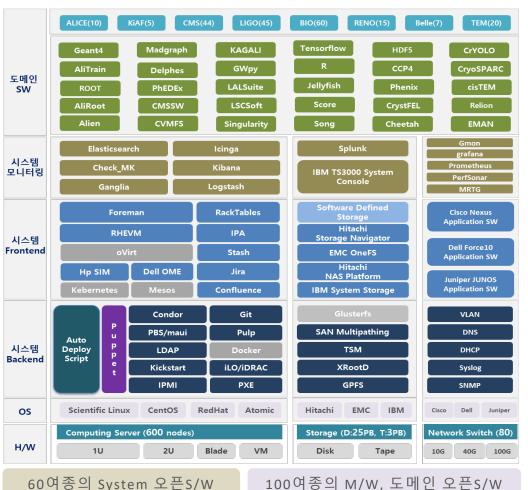
- 원자로에서 방출되는 중성미자 검출(영광원자로)
- 국내 실험 (40여명)
- 6. Genome Research
 - 차세대 개인별 맞춤 치료를 위한 유전체 데이터 분석
 - (국내) 서울대, 삼성병원, 국립암센터 등 (80여명)

Biology

7. 구조생물학

- 전자현미경과 연계한 데이터 분석 서비스 구축
- 2019년 공식 서비스 (PI 80여명)
- 8. 포항방사광가속기
 - 포항방사광가속기와 연계한 데이터 분석 서비스 구축
 - 2020년 공식 서비스 (80여명)

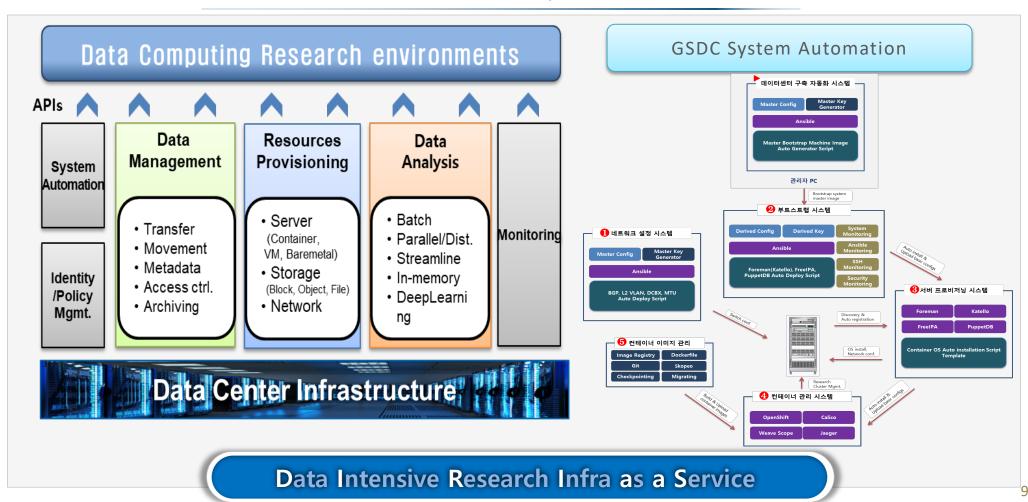
3-4 more domestic experiments under preparation


e.g. volcanic hazard mitigation, brain research, disease control, etc.

☑ IT 인프라(HW/SW) 운영을 위한 오픈 소스 역량 강화

오픈 소스 기반 데이터 집약형 연구를 위한 데이터 컴퓨팅 환경 제공

98% 오픈 소스 활용 개발 효율성 최신기술 도입 · 공개SW는 SW개발을 • 소스코드 원천기술에 대한 위한 핵심 자산 접근으로 선진SW 기술 습득 용이 상용SW의 96%가 개방적인 SW개발문화에 따른 공개SW 활용을 통해 기술혁신과 아이디어 수용 가능 개발기간 단축 및 비용절감 실현 0 공개SW 중요성 기업 저변확보 벤더 종속성 탈피 • 국내 시장에서의 • 소스코드 개방을 통해 독과점 SW에 대한 대체재 역할 자사 SW 저변 확산 용이 인재 양성 • 공개SW 통한 SW교육의 효과적 활용 및 실무 SW 기술 학습 CCP4 ROOT Coverture XRootD PBS Works

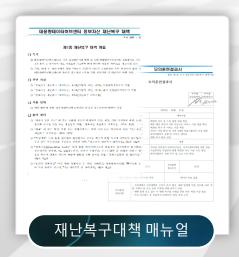


데이터센터 인프라 및 서비스 자동화 시스템 자체 개발 역량

100% 자체 기술을 통한 자동화 시스템 구축

(약 10만 라인 자체개발 SW)

문제 해결 능력 향상 → 시스템/서비스 신뢰성 향상



✓ 무중단 서비스를 위한 서비스관리 체계 개선

통합운영체계에 맞는 전문인력과 체계를 바탕으로 24시간 365일 무중단 서비스 제공

복구체계(1시간)

정보보호관리체계

(주요정보통신기반시설 기준)

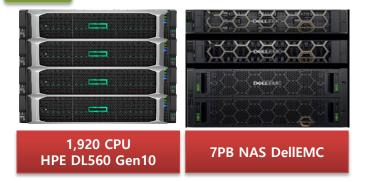
- 관리적/물리적/기술적
- 서비스 보안 수준 확립(기술적)
- 관리체계 및 정책 재정비 계획 수립

- 보안정책 관리 자동화 추진 (NIST SCAP and OpenSCAP 적용)
- 보안이벤트 가시성 확보 (보안장비확충 방안 수립)

보안성 제고 전략 수립

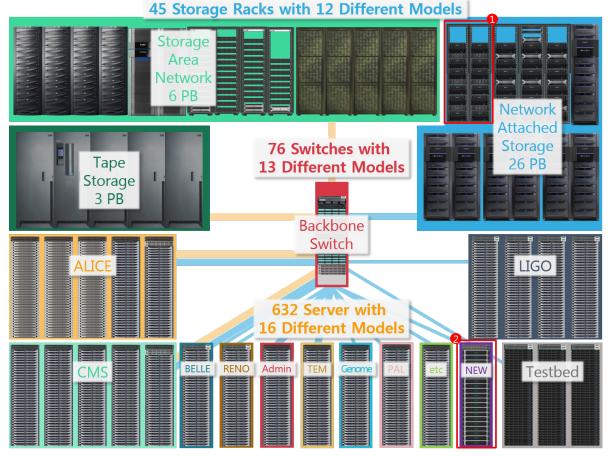
장애처리 프로세스 개선

데이터 저장 및 분석 인프라 [1,276코어(10.2억), 6.9PB 스토리지(9.6억), 3년 평균]



- 1 저장장치 7PB
- 2 컴퓨팅 노드용 서버 1,920코어

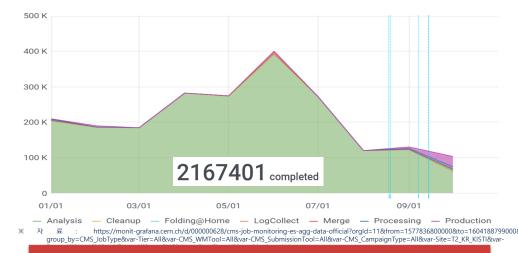
2019



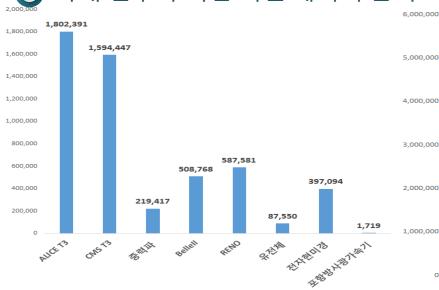
2020

다양한 벤더 제품의

효과적이고 체계적인 관리가 필요



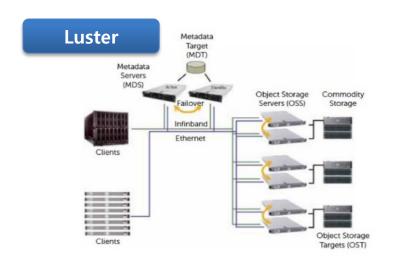
※자료: http://alimonitor.cern.ch/display?image=jfreechart-onetime-15057852129411397188.png

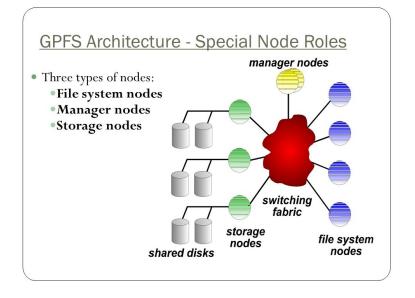

WLCG Tier-1 데이터 작업 처리 841만건

WLCG Tier-2 데이터 작업 처리 216만건

10월

국내 연구자 직접 지원 데이터 분석 작업 처리




분산 파일 시스템

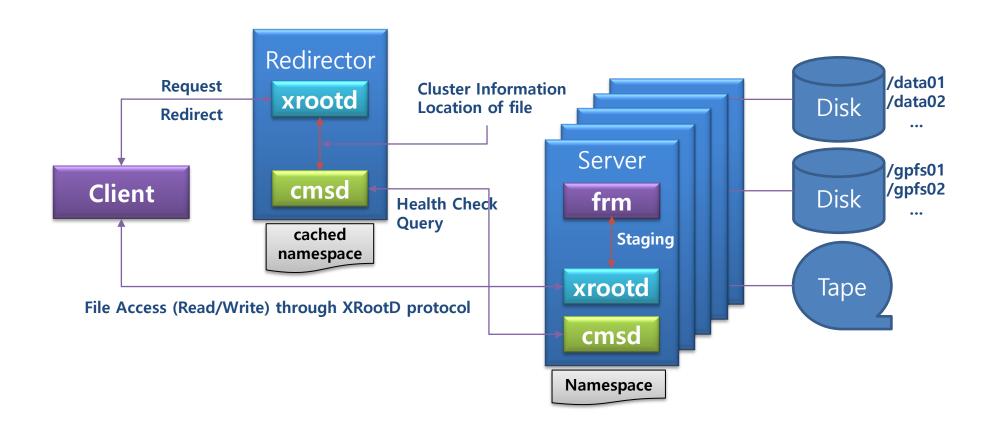
✓ 분산 파일 시스템이란?

- 여러 대로 나눠진 디스크들을 하나의 파일시스템(File System)으로 제공하는 기술 및 시스템
- Lustre, GPFS 등의 존재
- 다음 3개의 시스템으로 구성
 - 클라이언트
 구성된 파일시스템을 사용할 수 있는 컴퓨터
 - 메타데이터 서버 파일의 위치와 상태 정보를 서버로 파일에 대한 접근은 메타데이터 서버에 대한 질의로 시작
 - 스토리지 서버
 실제 데이터를 저장하는 서버로 파일들을 몇 개의
 블록으로 쪼개어 각 스토리지 서버에 나눠서 저장

- ✓ 스탠퍼드 선형 가속기 연구소(SLAC)에서 BaBar 실험을 위해 개발
- eXtended Root Daemon
 - 기존 RootD를 대체

- ROOT라는 HEP 분야에서 많이 활용되는 Analysis Framework의 파일(.root)을 관리 하기 위해 개발
- 파일 타입에 대한 제약이 없기 때문에 일반적인 데이터 관리 시스템으로 활용
- ☑ xrootd 서버와 Objectivity/DB 서버의 Load Balancing을 위해 개발된 olbd 서버로 구성
- Open Load Balancing Daemon
- 현재는 cmsd (Cluster Management Service Daemon)

- 공개 SW이기 때문에 쉽게 구할 수 있음
- 간편한 설치 및 설정
- 단순한 구조로 인해 관리 용이
- 메타데이터 서버 관리가 필요 없음
 - 메타데이터 서버 없이 파일의 위치 검색 가능


☑ 단점

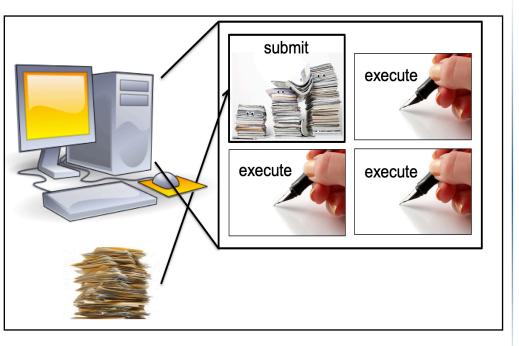
- 파일을 나눠 저장(striping)하지 않기 때문에 읽고 쓰기 성능이 striping을 지원하는 타 소프트웨어와 비교하여 좋지 않음
 - 파일 하나를 저장할 때 하나의 디스크 서버만 사용
 - 나머지 디스크 서버들이 관여하지 않음
 - 여러 파일을 동시에 저장해야만 최고 성능을 사용할 수 있음

(xroot://<fqdn_redirector:port>/<path>/<filename>)

작업 분산 처리 시스템

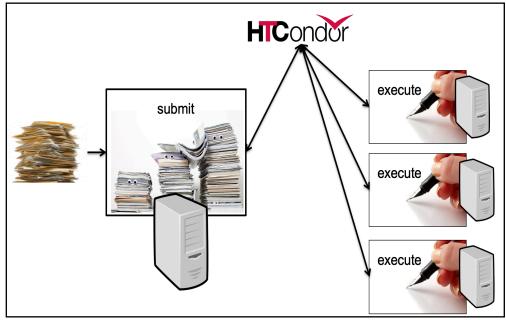
☑ 시스템에서 컴퓨팅 태스크를 실행하고 스케줄링하는 소프트웨어

✓ 개념


- 컴퓨팅을 필요로 하는 작업들을 <u>분산시켜 병렬처리</u> 하기 위한 소프트웨어 프레임워크
- Wisconsin-Madison 대학의 HTCondor 팀에 의하여 개발되었고 현재 Apache 라이선스
 2.0하에 오픈 소스 형태로 배포
- 1988년에 처음으로 제안 되었으며, 지난 30년 간 지속적으로 기능 추가 및 버그 수정 과정을 수행

☑ 특징

- 호환성 : C 프로그래밍 된 오픈소스로, 다른 프로그램에 비하여 높은 호환성
- 성능 : Job ClassAd에 해당 작업 실행에 필요한 자원량을 명시하여 최대한 작업들을 균등 분배
- O 다양한 기능 : flocking, checkpoint



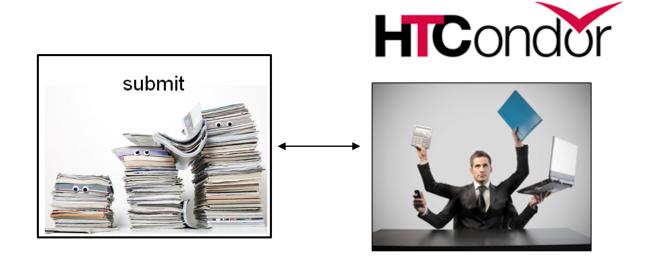
on One Computer

- ▼ 작업(job)을 하나의 머신에 제출
- ☑ 하나의 머신에서 모든 작업을 처리

HTCondor on Many Computers

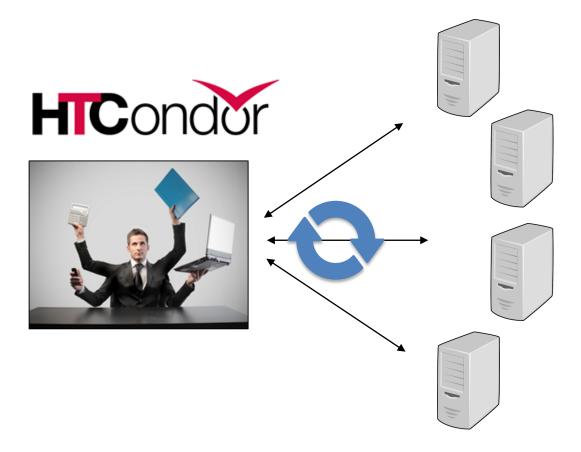
- ☑ 작업(job)을 submit 머신에 제출
- ✓ HTCondor 가 모든 컴퓨팅 및 작업(job)을 고려하여 적절하게 스케줄링

출처 : An Introduction to using HTCondor, Christina Koch, (HTCondor Week 2019)

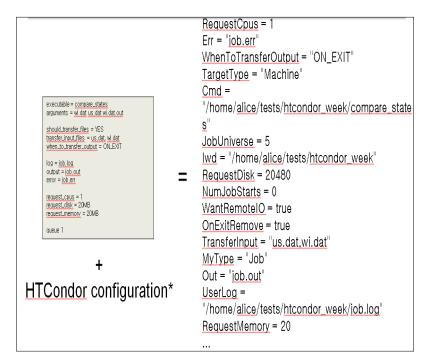


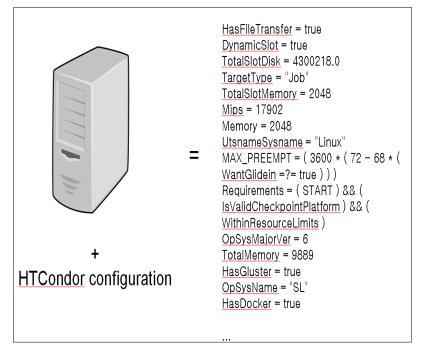
- ☑ HTCondor가 사용자 대신 작업을 관리하고 실행
- ✓ 시스템에 작업을 스케줄링하여, 적절히 분배
- ☑ 하나 이상의 시스템에서 여러 명의 사용자가 제출한 작업을 효율적으로 스케줄링

○ 사용자가 작업을 submit



○ Master Node를 통해 작업과 컴퓨팅 자원을 확인



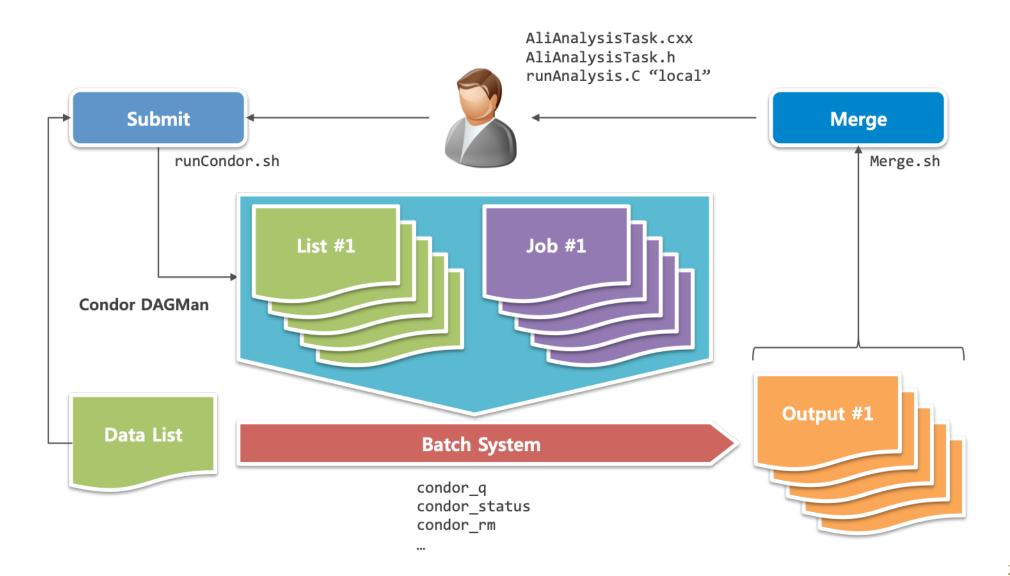


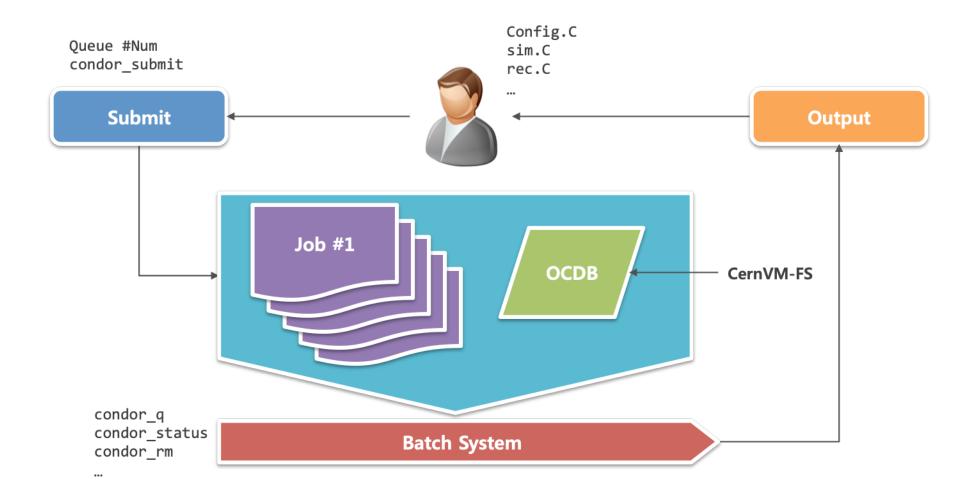
○ Job ClassAD, Machine ClassAD 정보를 저장 및 모니터링

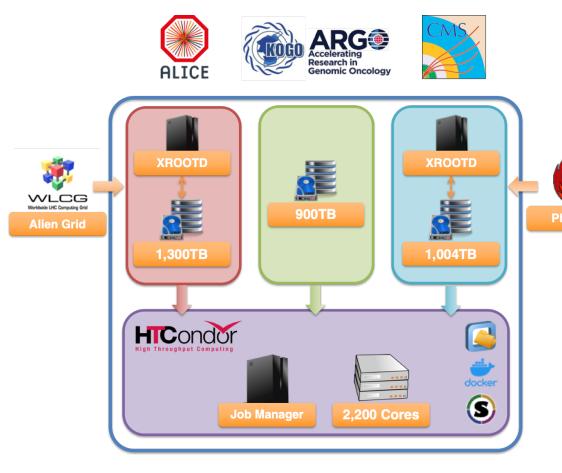
Machine Class Ad

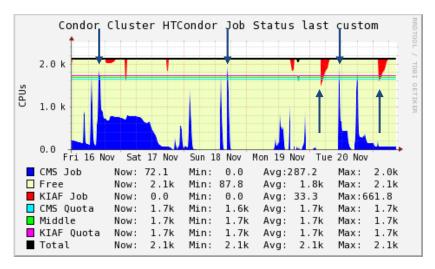
Match Making

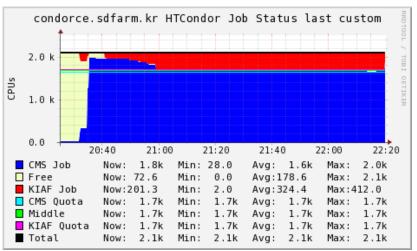
○ 사용자 작업 정보 및 워크노드 정보를 매칭




○ SN and WN 간 직접 통신

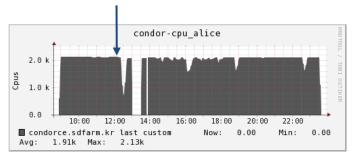

central manager

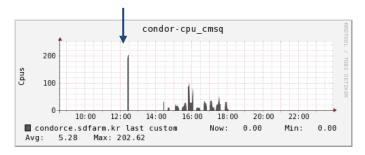


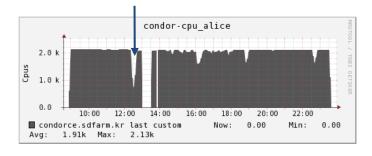


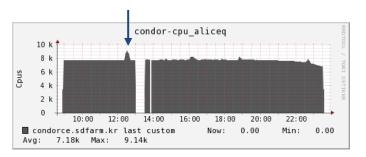
☑ 시스템 특징

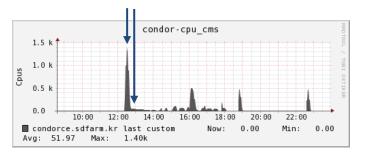
- 통합된 계산노드컨테이너 기반 가상화 프로그램Singularity를 이용하여 OS 의존성 해결
- O UI를 통한 연구 커뮤니티 구분
- 가상 머신을 이용한 배치시스템관리 서버 구축
- 연구 그룹별 분리된 스토리지 시스템

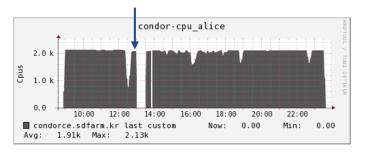



- 사용되고 있지 않은 자원은 어느 그룹제한 없이 사용 가능
 - 일시적 유휴자원 효율성 증대
- 통합 자원 중 기존 할당 자원 사용 보장- 타 커뮤니티 추가 사용 작업 중 가장 최근 작업부터 취소하여 재할당
- 슬롯 메모리 크기에 따라 할당 우선순위적용
 - 동적 할당 머신 효율성 증대


0. alice 작업 실행


1. 새로운 cms 작업 제출


2. 기존 alice 작업 취소


3. 취소된 작업은 alice 작업 큐에서 대기

4. cms 작업 실행 및 종료

5. alice 작업 재시작

인공지능 관련 분야

- 유지보수 방법
 - 일정에 따른 장비 교체
 - -> 문제 발생 가능성↓, 유지보수 비용↑
 - 고장에 따른 장비 교체
 - -> 문제 발생 가능성↑, 유지보수 비용↓
- 고장 발생 예측
 - 문제 발생 가능성↓, 유지보수 비용↓

- 작업 종료시간 예측
 - 진행중인 작업의 종료시간을 예측
- 스케줄링 정책 업데이트
 - 작업 종료 시간을 예측하여 재 스케줄링

THANK YOU