# B standard N-tupling for Bs → J/ψφ analysis at CDF

YoungJin Kim

(Korea Institute of Science and Technology Information)

2011. 02.24 YP 2011



# Result for B\_s to J/Psi Phi at CDF



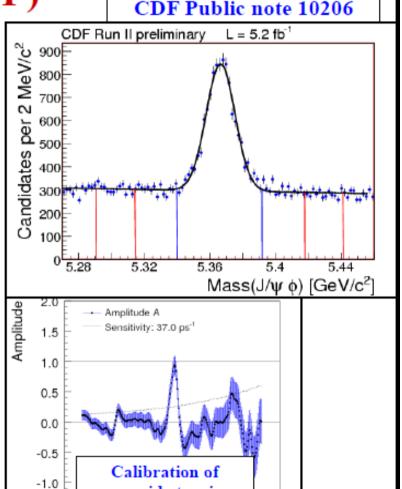


## $B_s \rightarrow J/\psi \varphi \text{ (CDF)}$

G. Giurgiu, ICHEP-2010, CDF Public note 10206

- 5.2 fb<sup>-1</sup> of data analyzed
- ~6500 signal events
- Same side flavour tagging calibrated in data
- Strong phases are free
- S wave included in the fit

< 6.5% at 95% CL


$$\tau_s = 1.529 \pm 0.025 \text{ (stat)} \pm 0.012 \text{ (syst) ps}$$

$$\Delta \Gamma_s = 0.075 \pm 0.035 \text{ (stat)} \pm 0.01 \text{ (syst) ps}^{-1}$$

Most precise measurements of  $\tau(B_s)$  and  $\Delta\Gamma_s$ 

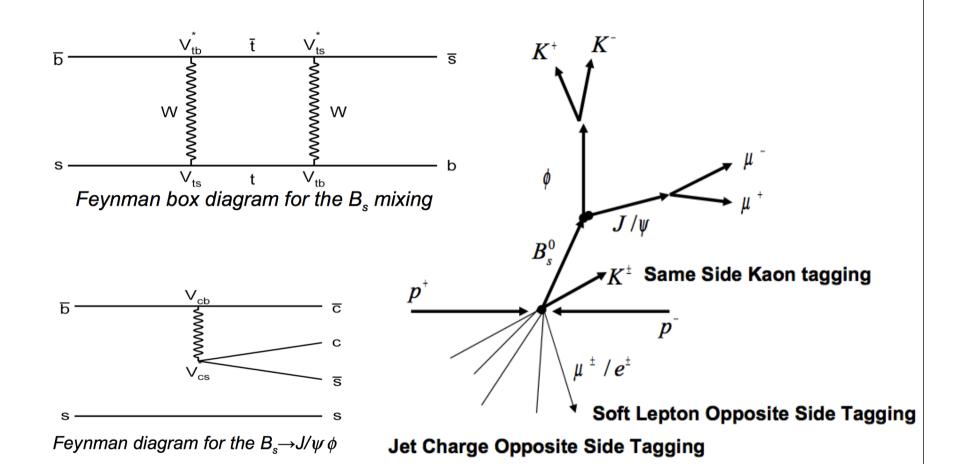
2010/07/27

BSM searches through B ph



same-side tagging

Mixing Frequency in ps-1


19

-1.5



# Analysis: B\_s to J/Psi Phi





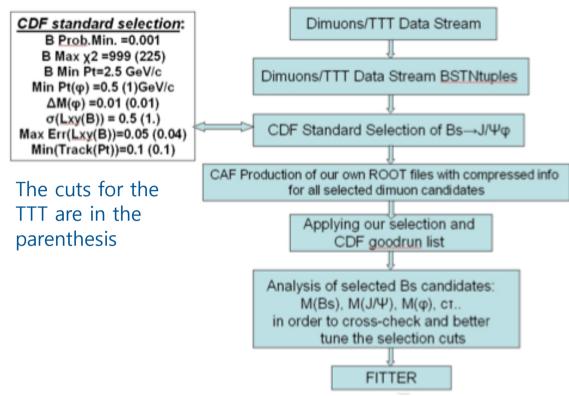
#### Measurement of $\beta_s$ and $\Delta\Gamma$

Kinematics of an event



# **Method of Analysis**




- 1) Reconstruction of the Bs→J/ψ φ mode
  - Kinematic recontruction of the final state
  - Identification of the Bs flavour (b-tagging)
- 1) Unbinned maximum likelihood fit for the determination of the  $\beta$ s,  $\Delta\Gamma$

- 1) Mass term:
  - Signal: 1 gaussian
  - Background: 1 exponentia
- 2) CP angular analysis and angular distributions
- 3) Ct error: 2 Gamma functions
- 4) Background Ct distribution:
  - 1 smeared and shifted exponential (TTT)
  - 1 prompt gaussian + 2 exponential (di-muon)



#### Flow DIAGRAM





This flow diagram in summarizes the procedure used for the data selection and analysis for both the two track trigger (TTT) and the dimuon trigger streams.

The selection follows into two stages.

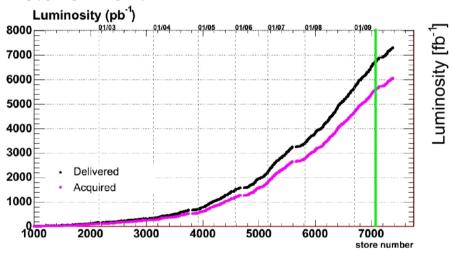
First, corresponds to applying the so called standard CDF pre-selection for both data streams.

#### Selection cuts defining a Bs → J/Ψφ candidates...

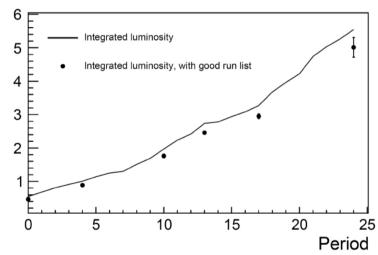
Second, refines the selection of Bs candidates on both data steams with slightly different cuts and still keeping rather loose requirements.

| TTT                                           | DIM                                           |
|-----------------------------------------------|-----------------------------------------------|
| $5.24 < Mass(B_s^0) < 5.4 \ GeV/c^2$          | $5.24 < Mass(B_s^0) < 5.48 \ GeV/c^2$         |
| $2.95 < \text{Mass}(J/\psi) < 3.25 \ GeV/c^2$ | $3.05 < \text{Mass}(J/\psi) < 3.15 \ GeV/c^2$ |
| $P_t(J/\psi) > 2.00~GeV/c$                    | $1.01 < \text{Mass}(\phi) < 1.03 \ GeV/c^2$   |
| $P_t(\phi) > 1.36 \; GeV/c$                   | $P_t(B_s^0) > 2.50 \; GeV/c$                  |
| At least one identified muon                  | $P_t(K) > 1.00 \; GeV/c$                      |
| $\chi_{xy}^2(B_s) < 18$                       |                                               |
| $d_0(B_s) < 65 \ \mu m$                       |                                               |

Table : summarizes the selection cuts defining a Bs  $\rightarrow$  J/ $\psi\phi$  candidate for both data streams in our analysis




# **Integrated Luminosity**




The data considered correspond to the time range between the beginning of Run II and Oct. 25th 2009 (period 0 to 26). The total recorder integrated luminosity by CDF from periods 0 to 26 is 4.2 fb<sup>-1</sup>.

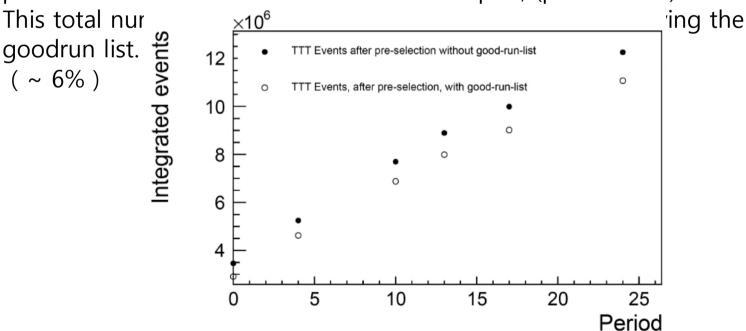
The goodrun list version 32, as created on March 12th 2010 is applied here and the total integrated luminosity after applying the goodrun list is 5.0187 fb<sup>-1</sup>.



Delivered and acquired luminosity at the CDF experiment (period 0-24)



CDF integrated luminosity before (full line) and after (points) the application of the goodrun list (period 0-24)




#### Number of events when applying goodrun list

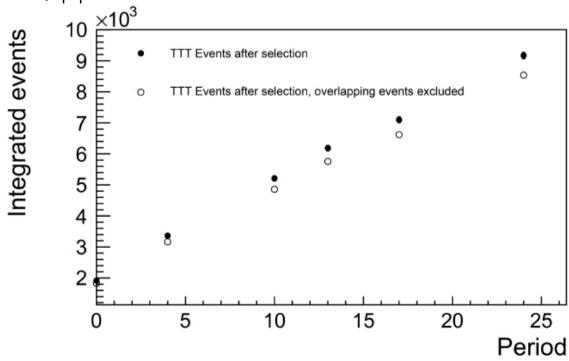


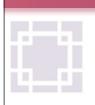
Numbers of events per run periods from run 0 to run 24, for the TTT data stream after applying the pre-selection and without applying or applying the goodrun list.

A total of 1.26 X  $10^7$  reconstructed J/ $\Psi \phi$  candidates are retained by this pre-selection in the TTT data stream BstNtuples, (period 0-26).



Bs  $\rightarrow$  J/ $\Psi \phi$  recontructed events in the TTT BstNtuples after pre-selection without (black dots) and with (white dots) applying the goodrun list (period 0-24)





#### **Selection Cuts**



This figure shows the number of Bs  $\rightarrow$  J/ $\psi \phi$  events after this selection by run period as applied to the TTT data stream (black dots). The corresponding numbers excluding the overlapping events are also shown (white dots).

The total number of Bs  $\rightarrow$  J/ $\psi \phi$  events after the selection cuts in the TTT data streams is 9169 and 70168 in the dimuon data stream. After excluding the overlapping events between the two streams we are left with 8538 Bs  $\rightarrow$  J/ $\psi \phi$  events.

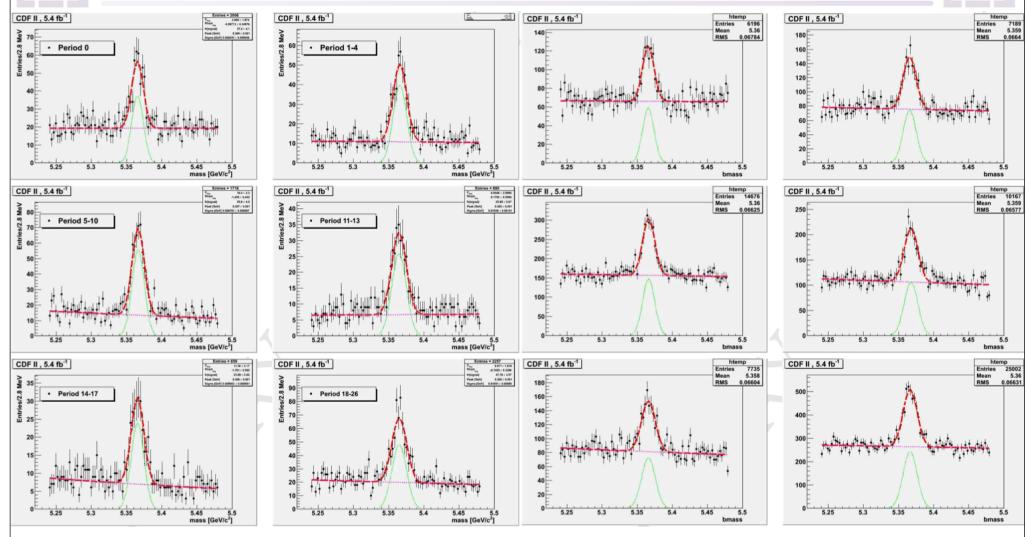




## **Selection Cuts**



| Period  | Events       | Events                 | Events                 | Overlap    |
|---------|--------------|------------------------|------------------------|------------|
|         | preselection | (Preselection+goodrun) | $(B_s^0 \text{ cuts})$ | events     |
| 0       | 3,463,653    | 2,906,425              | 2,009                  | 93 (4.6%)  |
| 1 - 4   | 1,781,239    | 1,719,045              | 1,391                  | 111 (8.0%) |
| 5 - 10  | 2,451,679    | 2,252,714              | 1,803                  | 164 (9.1%) |
| 11 - 13 | 1,199,567    | 1,112,792              | 931                    | 80 (8.6%)  |
| 14 - 17 | 1,094,714    | 1,025,521              | 874                    | 54 (6.2%)  |
| 18 - 26 | 2,575,462    | 2,055,105              | 2,330                  | 187 (8.0%) |
| Total   | 12,566,314   | 11,071,602             | 9,338                  | 689 (7.4%) |


Details of the number of events in the TTT data stream per run period at the various selection stages (period 0-26)

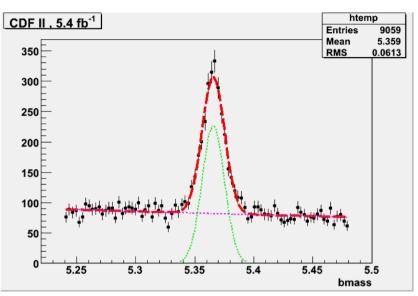
| Run Period | Selected $B_s^0$ events (entries) | Selected $B_s^0$ events (entries) |  |
|------------|-----------------------------------|-----------------------------------|--|
|            | from Dimuons                      | from Dimuons                      |  |
|            | without goodrun list selection    | with goodrun list selection       |  |
| 0          | 7,720                             | 6,196                             |  |
| 1 - 4      | 9,263                             | 7,189                             |  |
| 5 - 10     | 15,808                            | 14,667                            |  |
| 11 - 13    | 10,535                            | 10,167                            |  |
| 14 - 17    | 8,336                             | 7,699                             |  |
| 18 - 26    | 25,002                            | 23,717                            |  |
| Total      | 75,379                            | 70,929                            |  |

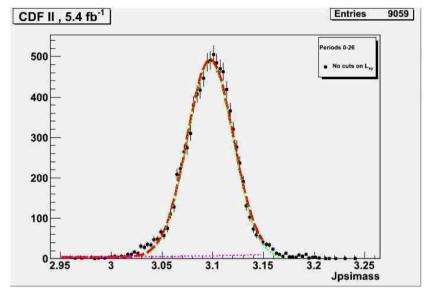
Number of Bs  $\rightarrow$  J/ $\psi \phi$  entries from the dimuon data stream after selection and without or with applying the goodrun list and without excluding the overlapping events and excluded overlaps (period 0-26)

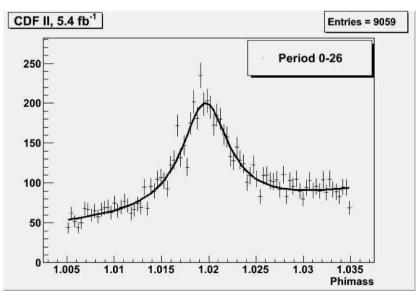
#### **Bs Mass Spectrum Plots for TTT and Dimuon**






Bs mass spectrum after selection and exclusion of the overlapping events for each run period in the **TTT data sample** (period 0-26)

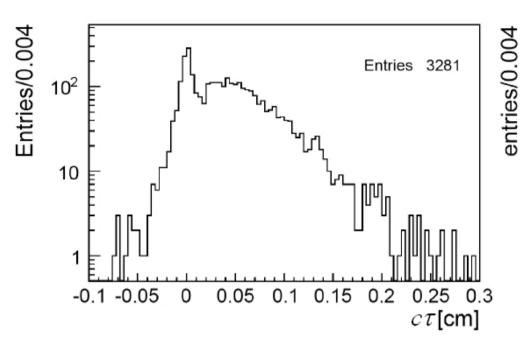

Bs mass spectrum after selection for each run period in the **Dimuon data sample** (period 0-26)




#### Mass spectrum of Bs, $J/\Psi$ and $\phi$ in the TTT data sample







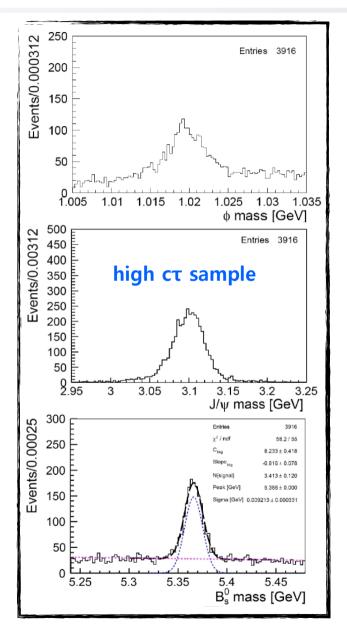


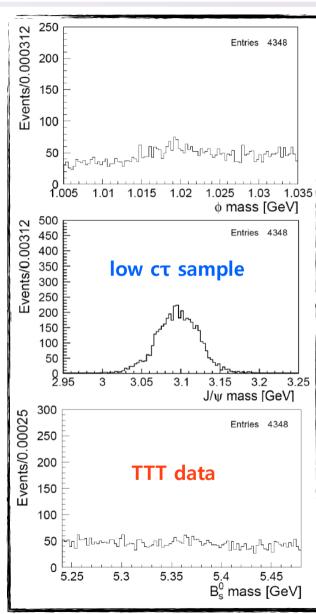



#### cτ distribution for the Bs candidates



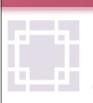



cτ Spectrum of reconstructed Bs Signal region


cτ Spectrum of reconstructed Bs Sideband region



#### φ, J/ψ and Bs mass spectra for two cτ samples







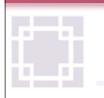

The LOW cτ sample < 0.02cm

The HIGH cτ sample > 0.02cm



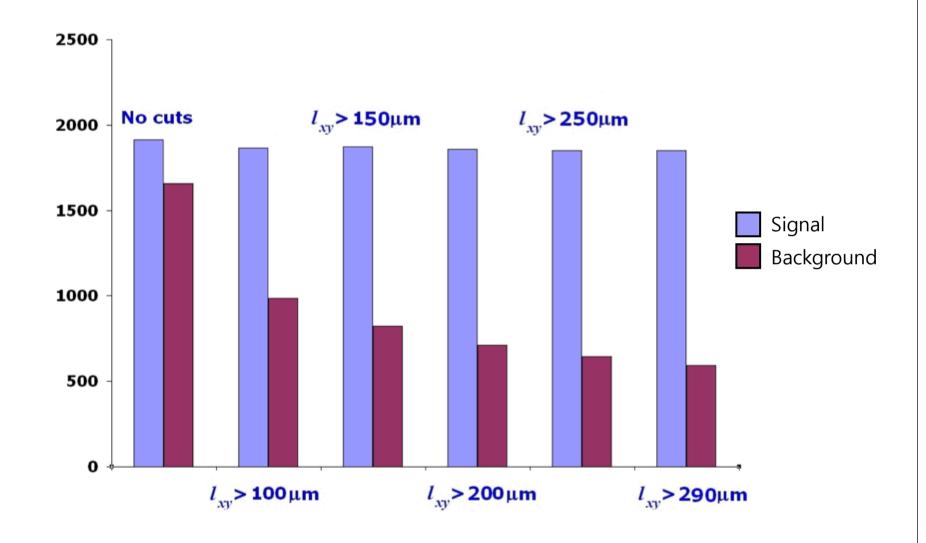
## Effects of L\_xy cuts on the Bs Sample




|                      | Signal Events (S) | Background (B) | $\int S\sqrt{S+B}$ |
|----------------------|-------------------|----------------|--------------------|
| No cuts on $L_{xy}$  | $1889 \pm 142$    | 1634           | 31.8               |
| $L_{xy} > 100 \mu m$ | $1846 \pm 128$    | 971            | 34.8               |
| $L_{xy} > 150 \mu m$ | $1856 \pm 124$    | 811            | 36.0               |
| $L_{xy} > 200 \mu m$ | $1844 \pm 121$    | 703            | 36.5               |
| $L_{xy} > 250 \mu m$ | $1837 \pm 119$    | 636            | 36.9               |
| $L_{xy} > 290 \mu m$ | $1837 \pm 118$    | 589            | 37.3               |

The Number of events in the TTT data stream for different cuts on L\_xy of the Bs candidates

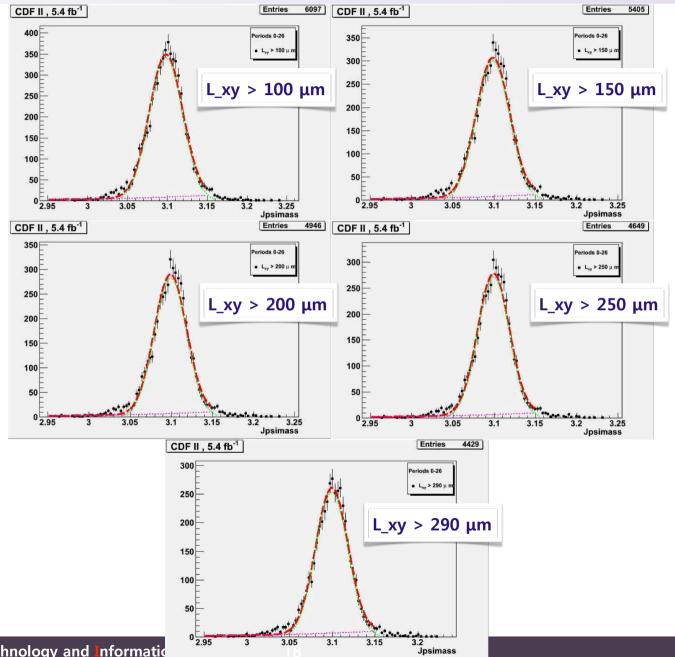
# Applying different cuts on L\_xy







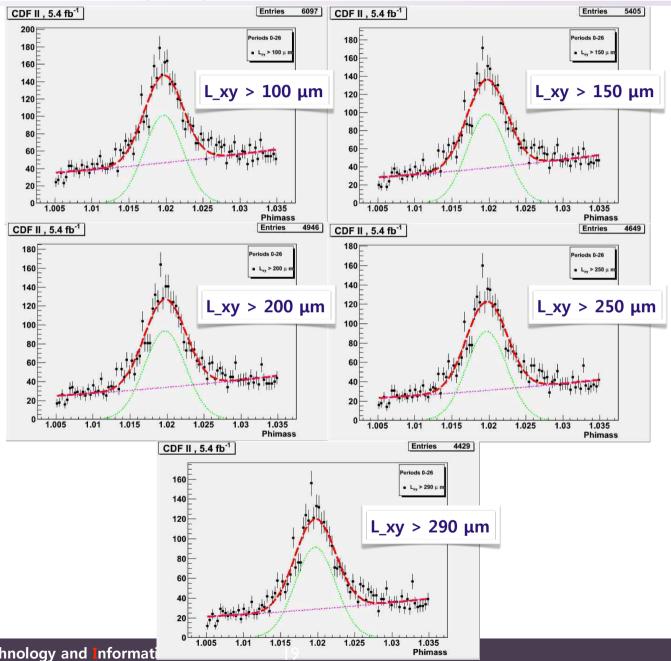







# Mass Spectrum of the J/ $\psi$ for similar cuts on L\_xy in the TTT data sample (period 0-26)








# Mass Spectrum of the $\phi$ for similar cuts on L\_xy in the TTT data sample (period 0-26)







## **Results**



The TTT provides as a signal  $(\pm 3\sigma)$  a total of 1914 events (excluding overlaps) over a background  $(\pm 3\sigma)$  of 1690 events, over the full period 0 to 26.

In the same run period we are left with a total of 5932 events from the dimuons.

This meaning that the TTT data are bringing 32.2 % more events to the analysis.