

Search for W' in Final States with Electron and Large Missing E_T in CDF and CMS

July 27 2011, KISTI

Youngdo Oh

WCU-CCP(http://wcu-ccp.knu.ac.kr), KNU

Motivation

Left-Right Symmetric Model

- Of weak interaction by spontaneous symmetry breaking in the right-handed sector, W' boson obtains its mass
- Assuming that coupling strength and CKM matrix to be same as the Standard Model

✓ Right handed neutrino is light and stable

W' Production and Decay

- W' can be produced in both ppbar and pp collisions through qqbar annihilation
- Possible decay channels
 - A lepton-neutrino pair
 - A quark pair
 - WZ pair

SU(2)_R X SU(2)_L X U(1)_{B-L} *W'/Z'* SU(2)_L X U(1)_Y *W/Z* U(1)_{EM}

CDF W' Search

p-pbar Collision at 1.98 TeV with 5.3 fb⁻¹ data

Analysis Procedure

Analysis procedure

- Event Selection (electron+MET in final state)
- Background Estimation (MC and QCD multijet)
- ✓ W' Signal Estimation
- ✓ M_T Fitting and Limits

Step

- 1. TopNtuple(100TB) → WpNtuple (500 GB) : save all events
- 2. event selection : data vs MC(background & signal) Electron energy corrections (using Mass of dielectron)
- 3. multijet bg. estimation : data driven estimate
- 4. M_T Fitting(binned likelihood)
- 7. Systematic Studies
- 8. Limit estimate

Data Samples

Inclusive High Pt electron sample

- ✓ 5.3 1 fb⁻¹ (up to period 25 with goodrun_em_nosi(v31))
- Level3 electron trigger path
 - ELECTRON_CENTRAL_18, ELECTRON70_L2_JET, W_NOTRACK

Dataset (collision data)

Period	Run Range	Production ID.	TopNtuple ID
P00	138425 - 186598	bhel0d	bhelkd
$P01 \sim P04$	190697 - 203799	bhel0h	bhelkh
$P05 \sim P10$	203819 - 228596	bhel0i	bhelki
$P11 \sim P13$	228664 - 246231	bhel0j	bhelmj
$P14 \sim P17$	252836 - 261005	bhel0k	bhelmk
$P18 \sim P23$	261119 - 274055	bhel0m	bhelmm
$P24 \sim P25$	274123 - 277511	bhel0m	bheimm

- MC backgrounds : official MC sample are generated by EWK group
- MC Signal : generated by ourself

Event Selection

Electron Energy Correction(Z→ee sample)

• before energy correction

• after energy correction

Electron Energy Correction

Background Estimation

- **MC background :**
 - W boson : including electron and MET in final states
 - Z boson : one electron is mismeasured and then produce as MET

Multijet(QCD) background : data-driven method

	12	N _{expected} = σ ● Br(pb) × ε ● Λ	A ×∫ L dt
Background	$\epsilon \cdot A$	$\sigma\cdot \mathcal{B}$	$N_{expected}$
$W \rightarrow e\nu$	1.96×10^{-1}	2687 ± 54 (NNLO) [15]	2794310
$W \rightarrow \tau \nu$	4.13×10^{-3}	$2687 \pm 54 (NNLO) [15]$	58962
$Z/\gamma \rightarrow ee$	1.29×10^{-2}	$251.3 \pm 5 (\text{NNLO}) [15]$	17190
$Z/\gamma \to \tau \tau$	2.66×10^{-3}	$251.3 \pm 5 (\text{NNLO}) [15]$	3548
WW	4.19×10^{-2}	13.25 ± 0.25 (NLO) [16]	2946
WZ	2.47×10^{-2}	$3.96 \pm 0.06 \text{ (NLO)} [16]$	520
$t\bar{t}$	4.62×10^{-2}	$6.7 \pm 0.5 (\text{NLO}) [17]$	1644
Multijet (from DATA)			16317

Event Selection : kinematics

Ó

50 100 150 200 250 300 350 400 450 500 Electron E_{τ} [GeV]

Ó

50 100 150 200 250 300 350 400 450 500 Missing E_{_} [GeV]

.5 2 2.5 Electron E_T / Missing E_T 1.5 1

Ó

0.5

Mt distribution

The Highest Mt Event

W': MC signal and K-factor

• W' mass = [500,1300] GeV/c², ~50k events for each mass points

- ✓ PYTHIA with CTEQ5L PDFs
- V+A coupling, assuming the right-handed CKM matrix and the strength couplings to be same with SM (manifest letf-right symmetric model)

W': kinematic distribution (Gen-Level)

low energy tails in W' MC signal

PDF heavily suppress high mass production region due to limitation of parton energy carried by quarks in Tevatron energy [PRL 100, 031804]

W' MC signal: Event Selection (A X E)

W' signal and background

Mt binned likelihood Fitting

Mt Fitting Result

	Events in m_T bins (GeV/c ²)					
	200 - 250	250 - 350	350 - 500	500 - 700	700 - 1000	
$W \to e \nu$	711^{+50}_{-50}	359^{+25}_{-25}	85^{+6}_{-6}	13^{+1}_{-1}	$1.1^{+0.1}_{-0.1}$	
Multijet	9^{+2}_{-2}	6^{+1}_{-1}	2^{+2}_{-2}	$0.2^{+1.6}_{-0.2}$	$0.01\substack{+1.10 \\ -0.01}$	
Other background	70^{+9}_{-6}	33^{+4}_{-3}	8^{+1}_{-1}	$1^{+0.1}_{-0.1}$	$0.09\substack{+0.01 \\ -0.01}$	
Total background	790^{+61}_{-58}	398^{+31}_{-30}	94^{+9}_{-8}	14^{+3}_{-1}	$1.2^{+1.2}_{-0.1}$	
Data	784	426	88	18	1	

Good agreement between the data and background expectations
 → No statistically significant excess observed for W'

Systematic Uncertainties

- PDF : used reweighting method
 - α_s : difference MRST72 and MRST75
 - MRST : difference between CTEQ5L and MRST72
 - CETQ6M : 20 CETQ6M sets are added in quadrature
 - Total Uncertainty : $\sqrt{\alpha_s^2 + (MAX(CTEQ6M, MRST))^2}$
- ISR/FSR : change Pythia parton shower parameters (joint physics group)
- Electron energy scale : assigned 1.0 % scale
- JES : $\pm 1\sigma$ jet energy scale and recalculate the MET
- I Multijet background : change the electron and multijet sample
- MC cross section error :
 - background : theoretical error
 - signal : using PDFs weighting factor

Systematic Uncertainties

Limit Calculation

Expected limit : Pseudo-Experiments with background only

LH Probability with different mass(1)

LH Probability (2)

Limits

Summary(CDF W')

 For search results on heavy gauge boson, W' decaying to an electron-neutrino pair, found no statistically significant excess observed in 5.3 fb⁻¹ of data

 Set the W' boson mass limit with m_{W'} > 1.12 TeV/c² @95% CL ,assuming manifest left-right symmetric model

Phys. Rev. D 83, 031102(R) (2011) [8 pages]

Search for a new heavy gauge boson W with event signature electron+missing transverse energy in $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV

CMS W' Search

p-p Collision at 7 TeV with 36 pb-1 data

CMS W' Group(2009-2010)

AN

CMS AN AN-10-314

CMS Analysis Note

The content of this note is intended for CMS internal use and distribution only

2010/12/07

Search for a heavy gauge boson W' in the final states with electrons and large missing E_T in pp collisions at $\sqrt{s}=7$ TeV

Alessio Ghezzi³, Federico de Guio³, Kerstin Hoepfner¹, DongHee Kim⁴, Simon Knutzen¹,

Search for a heavy gauge boson W' in final states with electrons and large missing E_T in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

The CMS Collaboration

Martina Malberti³, Philipp Millet¹, Darren Puigh², Tommaso Tabarelli de Fatis³, Sunghyun Chang⁴, and Peter Wittich² ✓ DEGLI STUDI UNIVERSIT

WCU-경북대, 아헨공대(독일), 코넬대(미국) 밀라노대(이태리) 총 11명

PAS

CMS AN EXO-10-014

CMS Analysis Note

The content of this note is intended for CMS internal use and distribution only

2010/12/07

W' Search Analysis

- W' \rightarrow e v Signature : Isolated hight-p_T electron + large missing transverse energy
- Main background : Standard Model W \rightarrow e v
- Counting experiment after cutting on transverse mass.

CMS Integrated Luminosity (Mar2010 – Nov2010)

Object Selection

Preselection

- Good primary vertex
- $\circ \geq 1$ electron with ET>25 GeV and H/E < 0.1

MET

• Uses MET from particle flow algorithm

✓ High P_T Electron Selection

- electron
- Single electron High Level Trigger
- 1 good High p_T electron
- $\Delta \phi$ (electron, MET) > 2.5
- \circ 0.4 < electronE_T/MET < 1.5

Variable	Barrel	Endcap
ET	> 30 GeV	> 30 GeV
$ \eta_{sc} $	< 1.442	$1.560 < \eta_{sc} < 2.5$
isEcalDriven	TRUE	TRUE
$ \Delta\eta_{ m in} $	< 0.005	< 0.007
$ \Delta \phi_{ m in} $	< 0.09	< 0.09
H/E	< 0.05	< 0.05
σίηἰη	n/a	< 0.03
E2x5/E5x5	>0.94 OR $E^{1x5}/E^{5x5} > 0.83$	n/a
EM + Had Depth 1 Isolation	<2+0.03*Et	<2.5 for Et<50 else
		<2.5+0.03*(Et-50)
Had Depth 2 Isolation	n/a	<0.5
Track Isol: Trk Pt	<7.5	<15

High Level Trigger

- HLT path not prescaled
- HLT paths with track requirement have 97% efficiency

HLT path	Run Range	$L(pb^{-1})$
HLT_Ele10_LW_L1R	135059 - 140041	0.1
HLT_Ele15_SW_L1R	140042 - 141900	0.2
HLT_Ele15_SW_CaloEleId_L1R	141901 - 146427	2.9
HLT_Ele17_SW_CaloEleId_L1R	146428 - 147116	4.4
HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1	147117 - 148058	9.5
HLT_Ele22_SW_TighterEleId_L1R_v2	148819 - 149064	9.7
HLT_Ele22_SW_TighterEleId_L1R_v3	149065 - 149442	8.1

- Inclusive Electron/Photon paths: H/E < 0.15
- CaloEleId: H/E < 0.15, $\sigma_{i\eta i\eta}$ < 0.014 (EB) or 0.035 (EE);
- EleId: CaloEleId plus dEta < 0.01, dPhi < 0.08 (requires track);
- TightCaloEleId: H/E < 0.1, $\sigma_{i\eta i\eta}$ < 0.012 (EB) or 0.032 (EE);
- TightCaloEleIdTrack: H/E < 0.1, $\sigma_{i\eta i\eta}$ < 0.012 (EB) or 0.032 (EE) (requires track)

Background Estimations

- Need to determine both the shape and the normalization of the transverse mass distributions
 - -. W : M_T shape from MC, yield from data-driven
 - QCD : Data-Driven Method
 - -. The other backgrounds from MC (Transverse mass is calculated with E_T of electron and missing E_T)

$$M_T = \sqrt{2 \cdot E_T^{ele} \cdot E_T^{miss} \cdot (1 - cos \Delta \phi_{eE_T^{miss}})}$$

Background	Shape	Normalization
$W \rightarrow ev$	MC with hadronic recoil correction	fit of E_T^{ele}/E_T^{miss}
multi-jet	• non-isolated electrons from DATA	fit of E_T^{ele}/E_T^{miss}
Other backgrounds	MC	MC

W and QCD estimates

- Use ET/MET distribution (last step of our selection) to normalize W and QCD MT distribution
- Fit data ET/MET distribution with QCD enriched sample (non-iso electrons) and W MC sample with Crystal-Ball function

Background and data comparisons

Transverse mass distribution

Good agreement in both background prediction observed in the MT distribution (left) and the cumulative distribution (right)

Highest transverse mass event

 $M_T = 493 \text{ GeV}$

Systematic Uncertainties

Source of systematic error	Uncertainty	Signal	Total Bkg
Integrated luminosity	11%	11%	0.84%
Electron reco efficiency	1.9%	1.9%	0.14%
Electron ID efficiency	1.5%	1.5%	0.11%
Electron energy scale	1%(EB), 3%(EE)	0.4%	9.9%
$E_{\rm T}^{\rm miss}$ scale	5%	1.6%	1.4%
$E_{\rm T}^{\rm miss}$ resolution	10%	0.9%	0.5%
Cross section		10%	1.1%
Total (lumi not included)		10.5%	28.7%

Final Data and Background Estimation

- Good agreement between data and background prediction
- No excess in data \rightarrow set a lower-bound on the mass of the W'

Sample	$M_T > 45 \ GeV$	> 200	> 300	> 400	> 500	> 600
W ightarrow e u	75609.1 ± 319.0	33.7 ± 2.7	7.2 ± 0.9	2.5 ± 0.5	0.9 ± 0.3	0.6 ± 0.2
multi-jet	7083.4 ± 3546.1	6.3 ± 3.3	1.6 ± 0.9	$0.5{\pm}0.3$	$0.2\!\pm 0.2$	0.2 ± 0.2
$t\bar{t}$	59.6 ± 23.4	$4.1\!\pm1.7$	0.6 ± 0.3	$0.1{\pm}0.1$	$0.0 {\pm} 0.0$	0.0 ± 0.0
W ightarrow au u	1082.9 ± 79.3	1.1 ± 0.3	0.2 ± 0.2	0.0 ± 0.1	0.0 ± 0.0	0.0 ± 0.0
Other bkg	359.1 ± 72.6	2.0 ± 0.4	0.6 ± 0.1	0.2 ± 0.0	$0.1\!\pm 0.0$	0.0 ± 0.0
Total bkg	84194.2 ± 3563.3	$47.3{\pm}4.7$	10.2 ± 1.4	3.3 ± 0.6	1.2 ± 0.3	0.9 ± 0.3
Data	84468	38	8	2	0	0

* Other background : gamma+Jet , $W \rightarrow \mu\nu$, Drell-Yan, WW, WZ, ZZ, single top

* Table includes both statistical and systematic uncertainties added in quadrature (does not include lumi uncertainty)

Setting the Mass Limit

- Cut-and-Count Statistical Method used
- Using Bayesian 95% CL limit calculator to determine expected and observed limits
- For each W' mass point, use MT cut with best expected limit

$M_{W'}$	$M_{T} >$	N _{sig}	N _{bkg}	N _{data}	$\sigma_{\rm theory}$	Exp limit	Obs limit
(TeV/c^2)	(TeV/c^2)	(Events)	(Events)	(Events)	(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.28 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

W' Mass Limit

FIG. 3 (color online). The 95% C.L. limits on the cross section times the branching fraction as a function of W' boson mass and the expected limits from the simulated experiments with background only. The black solid lines represent the median expected; the shaded bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ invervals on the expected limits. The region above the red dashed line (observed limit) is excluded at the 95% C.L. The cross section times the branching fraction assuming the manifest LR symmetric model, $\sigma \cdot \mathcal{B}(W' \rightarrow e\nu)_{LR}$, is shown along with its uncertainty. The intercept of the cross section limit curve and the lower bound of the theoretical cross section yields $m_{W'} > 1.12 \text{ TeV}/c^2$ at the 95% C.L.

Publication

Physics Letters B 698 (2011) 21-39

Search for a heavy gauge boson W' in the final state with an electron and large missing transverse energy in *pp* collisions at $\sqrt{s} = 7$ TeV $\stackrel{\text{transverse}}{=}$

CMS Collaboration*

CERN, Geneva, Switzerland

ARTICLE INFO

Article history:

Received 29 December 2010 Received in revised form 8 February 2011 Accepted 19 February 2011 Available online 24 February 2011

ABSTRACT

A search for a heavy gauge boson W' has been conducted by the CMS experiment at the LHC in the decay channel with an electron and large transverse energy imbalance E_T^{miss} , using proton-proton collision data corresponding to an integrated luminosity of 36 pb⁻¹. No excess above standard model expectations is seen in the transverse mass distribution of the electron- E_T^{miss} system. Assuming standard-model-like

KNU KYUNGPOOK 2011 W' analysis (by WCU-KNU)

- Data update & monitoring
 - new data is collected, ~1fb⁻¹ collected by last June
 - data were minotored every week during last 3 Months
 - \rightarrow No access observed
- Data driven background estimation
 - Trigger includes isolation from 2011 data, new data driven method needs.
 - ttbar : b-tagging method
 - QCD : adopt opening angle method as well as E_T/MET fitting method (CB fit) (fake electron and the other jet are almost back to back for QCD.)
 - A conservative approach on setting mass limit
 - applying **likelihood fitting** to M_T distribution of signal + background. (with stat. and systematic uncertainty on background)
 - pseudo-experiments will be performed to get 1σ and 2σ band of expected limit.
- PDF uncertainties scheme for CMS provided by KNU
 effects on selection efficiency,
- Theoretical cross section of W' on NLO, NNLO etc..
 - K factor calculation code migrates to CMS W' group by KNU

Conclusion

- Two experiment published W' mass limit on Feb 2011.
- CDF Tevatron
 - M _{W'} > 1.12 TeV
- CMS LHC
 - M _{W'} > 1.36 TeV @ 36pb⁻¹ , 2010 data
 - 2011 data by June.
 - \rightarrow Luminosity 1 fb⁻¹ .
 - \rightarrow Need to understand background
 - \rightarrow new limit : EPS 2011

BACKUP

W' Cross-section uncertainty

$$\sigma^{(A)} = \sigma^{(B)} \cdot \frac{1}{N} \sum_{i=1}^{N} w_i(x_1, x_2, Q)$$

KYUNGPOOK

Fitting Result : $\alpha_0: 0.991 \pm 0.001$ $\alpha_{jet}: 1.134 \pm 0.011$

	Events in m_T bins (GeV/c ²)					
	200 - 250	250 - 350	350 - 500	500 - 700	700 - 1000	
$W \to e \nu$	711^{+50}_{-50}	359^{+25}_{-25}	85^{+6}_{-6}	13^{+1}_{-1}	$1.1^{+0.1}_{-0.1}$	
Multijet	9^{+2}_{-2}	6^{+1}_{-1}	2^{+2}_{-2}	$0.2^{+1.6}_{-0.2}$	$0.01\substack{+1.10 \\ -0.01}$	
Other background	70^{+9}_{-6}	33^{+4}_{-3}	8^{+1}_{-1}	$1^{+0.1}_{-0.1}$	$0.09\substack{+0.01 \\ -0.01}$	
Total background	790^{+61}_{-58}	398^{+31}_{-30}	94^{+9}_{-8}	14^{+3}_{-1}	$1.2^{+1.2}_{-0.1}$	
Data	784	426	88	18	1	

Good agreement between the data and background expectations
 → No statistically significant excess observed for W'

Search W': Mt fitting

Search for excess in the m_T dist. over SM backgrounds

Variable Binned maximum likelihood method

$$\mu^{j} = \alpha_{0} \left[\sum_{i \neq jet} \mu_{i}^{j} + \beta \mu_{sig}^{j} \right] + \alpha_{jet} \mu_{je}^{j}$$

- $\alpha_0, \alpha_{jet}, \text{ and } \hat{\beta} \text{ are the parameters}$
- $\mu_i^j(\mu_{jet}^j)$ is the expected number of background(multijet)
- μ_{sig}^{j} is the expected number of $W' \to e\nu$ signal
- Use Poisson probability with a Gaussian constraining on multijet bg

$$p(\alpha_0, \alpha_{jet}, \beta) = \left(\prod_j \frac{\mu_j^{n_o^j} e^{-\mu_j}}{n_o!} \right) \mathcal{G}(\alpha_{jet}, \sigma_{jet}),$$

where $\mathcal{G}(\alpha_{jet}, \sigma_{jet}) = \frac{1}{\sqrt{2\pi\sigma_{jet}}} \exp\left(-\frac{1}{2} \left(\frac{\alpha_{jet} - 1}{\sigma_{jet}} \right)^2 \right)$

• n_0^j is number of observing events

W'Acceptance x Efficiencies(1)

Multijet Background Estimation

Multijet Background Estimation

Data-driven method adopted

- QCD events dominate dijet
 - one jet : mis-id as electron
- Opening Angle between electron and sum E_T to be back-to-back
 - sum $E_T = (\sum \vec{E}_T^{towers}) \vec{E}_T^e$
 - QCD Event : ϕ (electron,sum E_T) $\rightsquigarrow 180^{\circ}$
 - Real $W \to e\nu$ Event : no correlation in Opening Angle
- To estimate the Number of QCD Events,
 - \rightarrow we made Electron and QCD enriched sample

 $IsolCorrE_T = (IsolFrac - 0.02) \times E_T$

- Electron enriched sample : $IsolCorrE_T < 1.0$ (subtracted $Z \rightarrow ee$)
- Signal sample : $IsolCorrE_T < 3.0$
- QCD enriched sample : $IsolCorrE_T > 6.0$ (subtracted $W \rightarrow e\nu, Z \rightarrow ee$)
- \rightarrow Likelihood fitting in Angular Distribution[$\pi/2, \pi$]

W'Acceptance x Efficiencies (2)

ZUITINATT CINO MUNINE Seminar

DongHee Kim

W" Mass [GeV/c²]

Theoretical Motivation

- Heavier versions of the W boson are found in many theories.
- Left-right symmetry of electroweak interactions
 - Extend the Standard Model gauge group to include right-handed interactions

 $SU(2)_L \times U(1)_Y \longrightarrow SU(2)_R \times SU(2)_L \times U(1)_{B-L}$

• Extra dimensions

• Kaluza-Klein(KK) tower of heavy copies of all SM fields

- n = KK excitation mode
- R = size of extra dimension

$$M_{W_n}^2 \sim \frac{n^2}{R^2} + M_{W_0}^2$$

- General extensions of the SM gauge group
 - e.g Little Higgs models

Signal Model

- Neutrino is light and stable
 - Important in the context of the left-right symmetric model (v_R)
- Coupling of W' to fermions is the same as for W.
 CKM matrix is the same as well.
- No mixing between W' and other gauge bosons .
 Excludes mixing between W' and either W or Z'.
- Decay channels W'→ WW, WZ and ZZ are suppressed .
 Occurs in many extended gauge models.
- Decay width of W' scales with its mass.

$$\Gamma_{W'} = \frac{4}{3} \frac{M_{W'}}{M_W} \Gamma_W$$

• Additional generations of fermions (if exist) are too heavy to be produced.

Data/MC Scaling

• Scale factor from the efficiencies of both data and MC

Scale factor	0.978 ± 0.003 (stat.) ± 0.002 (syst.)	$0.994 \pm 0.006(\text{stat.}) \pm 0.002(\text{syst.})$
Data	$91.4\% \pm 0.3\%$	$90.6\% \pm 0.6\%$
Drell-Yan +BG	$93.5\% \pm 0.0\%$	$91.2\% \pm 0.1\%$
Drell-Yan	93.9% ± 0.0%	91.6% ± 0.1%
	HEEP Eff.(Barrel)	HEEP Eff.(Endcaps)

W→ev transverse mass distribution

- Method gives recoil corrected MET on event-by-event basis
 - Use this MET in our event selections (ET/MET and $\Delta \phi$)
 - Use this MET to create transverse mass template for $W \rightarrow ev$
- Comparing MT distributions with and without correction, agreement with data improves most for 100 < MT < 150 GeV

Cross-check of QCD enriched sample

- Use data from non-isolated electrons
 - -. Sample enriched in multi-jet events
- we compare this to the distribution obtained from I nstead inverting the $\Delta\eta(trk,SC)$ and $\Delta\phi(trk,SC)$ requirements
 - -. Decent agreement between two samples

CDF and CMS competition

CDF와 CMS의 W' 논문 출판 경쟁

CDF 5.3 fb⁻¹ w/ 2 TeV p-pbar comparable with CMS ~ 35 pb⁻¹ w/ 7 TeV p-p involved in W' analysis in both CDF(KNU only) and CMS(KNU, Aahen, Cornell, Milano)

- 2010년 3월 LHC 7 TeV에서 데이터 획득 시작 (계획 200 pb⁻¹ 2010, 1 fb⁻¹ 2011)
- 6월 8일(CMS run coordinator e-mail) LHC 가속기 문제 등으로 금년 기껏해야 10 pb⁻¹ 정도 획득할 것으로 예상
- CMS 파리에서의 ICHEP 학술회의에서 100 nb⁻¹ 정도의 데이터 분석 결과 발표
- 본 그룹 CDF에서 5.3 fb⁻¹ 데이터로 W' 탐색 계속 수행 중(약 2년간)
- 2010년 9월 9일 W'데이터 분석 결과 인증받음. (M > 1.1 TeV)
- 2010년 9월 20일: CDF내 W' 탐색 논문심사위원회 결성
- 9월말부터 LHC running이 심상치 않음
- 일주일에 5 pb⁻¹의 데이터를 획득하여 10월말까지 ~ 40 pb⁻¹ 획득
- 10월 중순부터 출판 경쟁이 시작됨
- 동시에 CMS W' 탐색의 같은 멤버로서 이상한 동거가 시작됨
- CDF논문심사위원회 및 대표에게 위급성 긴급 타진(8차례 국제전화)
- CDF W' sensitivity를 높이기 위한 피나는 노력이 이루어짐
- W mass high tail 설명으로 질량 하한선이 상향 조정될 것임.
- CDF실험 대표의 직권으로 단계별 심사를 대폭 줄임
- 결국 2010년 12월 23일 CDF 논문 PRL에 제출
- CMS는 동년 12월 29일에 Physics Letter B에 제출
- APS 편집장이 CDF W' 논문 심사 기간을 심사위원에게 1주일 만 부여
- CDF 논문 Physical Review D Rapid Communication에 2011년 2월 3일 출판됨
- CMS 논문 2011년 2월 27일 출판됨.
- 이는 CDF 사상 처음 있는 일임. 그만큼 LHC의 경쟁력이 큼.(에너지)
- 이 일로 인해 CDF의 논문 제출을 위한 제반 규정이 바뀜

