Heavy charged gauge boson, W', Search at Hadron Colliders

YuChul YANG (Kyungpook National Univ.)

- HEP Seminar, KISTI, Sep 07, 2011 -

Motivation (W' gauge boson)

Left-Right Symmetric Model

 Of weak interaction by spontaneous symmetry breaking in the right-handed sector, W' boson obtains its mass

Signal Model

- Right-handed neutrino is light and stable.
- Coupling of W' to fermions is the same as for W
- ✓ No mixing between W' and the other gauge bosons.
- Decay width of W' scales with its mass.

Production and Decay

- W' can be production in both ppbar and pp collisions through qqbar annihilation
- Decaying to A lepton-neutrino
- Decaying to A quark pair (include tb channel)

SU(2)_R X SU(2)_L X U(1)_{B-L} W'/Z'SU(2)_L X U(1)_Y W/ZU(1)_{FM}

 Result of Search at Hadron Collider Experiments

 CDF W' Search (2010)
 CMS W' Search (2010 and 2011)

CDF W' Search (W' \rightarrow electron + MET)

p-pbar Collision at 1.98 TeV with 5.3 fb⁻¹ data

Data Samples

- Looking for the excess events over than SM background in high transverse mass region.
- Data : Inclusive High Pt electron sample

 5.3 fb⁻¹ (taken in Feb. 2002 ~ Jun. 2009) with good run
 Level3 electron trigger path
 ELECTRON_CENTRAL_18, ELECTRON70_L2_JET, W_NOTRACK

 Background and Signal Samples

 PYTHIA MC samples
 Multijet Background : from data driven

Event Selection

Electron Energy Correction

Using invariant mass of Z to ee sample

Electron Id. Efficiency

● Z →ee Sample used

 E_T

Track Z_0

Track p_T

 E_{HAD}/E_{EM} Isolation E_T Lshr

E/p

CES ΔX

CES ΔZ

Fiducial

Conversion

- $> N_{TT}$: both electrons passing Tight Cut.
- N_{TP} : one passing Tight, the other passing Loose Cut

$> 25 \mathrm{GeV} \ (15 \mathrm{GeV})$	1
$< 6\mathrm{cm}$	
$> 15 \mathrm{GeV/c}$	
$< 0.055 + 0.00045 \times E$	
$< 3 + 0.02 \times E_T$	
< 0.2	-
$< 2.5 + 0.015 \times E_T$ for $E_T < 100 \text{GeV}$	

Track $p_T > 25 \,\mathrm{GeV/c}$ for $E_T > 100 \,\mathrm{GeV}$

 $< 5.0 \, {\rm cm}$

 $< 3.0 \, {\rm cm}$

==1

 $\neq 1$

Background Estimation

- MC background :
 - W boson : including real electron and MET in final states
 - Z boson : one electron is mis-measured and then produce as MET
- Multijet(QCD) background : data-driven method (next page)

$N_{expected} = \sigma \bullet Br(pb) \times \varepsilon \bullet A \times J$				
Background	$\epsilon \cdot A$	$\sigma \cdot \mathcal{B}$	$N_{expected}$	
$W \rightarrow e\nu$	1.96×10^{-1}	$2687 \pm 54 \text{ (NNLO)} [15]$	2794310	
$W \rightarrow \tau \nu$	4.13×10^{-3}	2687 ± 54 (NNLO) [15]	58962	
$Z/\gamma \rightarrow ee$	1.29×10^{-2}	$251.3 \pm 5 (\text{NNLO}) [15]$	17190	
$Z/\gamma \to \tau \tau$	2.66×10^{-3}	$251.3 \pm 5 (\text{NNLO}) [15]$	3548	
WW	4.19×10^{-2}	13.25 ± 0.25 (NLO) [16]	2946	
WZ	2.47×10^{-2}	$3.96 \pm 0.06 \text{ (NLO)} [16]$	520	
$t\bar{t}$	4.62×10^{-2}	$6.7 \pm 0.5 (\text{NLO}) [17]$	1644	
Multijet (from DATA)			16317	

Multijet Background Estimation

Data-driven method adopted

• Multijet events dominate dijet

- One jet : mis-id. as electron
- The other jet : mis-measured and produce MET

Opening Angle between electron and sumET to be back-to-back
 Multijet event : to be ~ pi/2

Real W event : no correlation in opening angle

To estimate the Number of Mulijet event
 Non isolation event (Multijet) + Tight isolation event (Real W)
 Likelihood Fitting used

Multijet Background Estimation

Background and Data Comparisons

The Highest m_T Event Display

W' Signal : cross-section and width

- W' mass = [500,1300] GeV/c², ~50k events for each mass points
 - ✓ PYTHIA with CTEQ5L PDFs
- Cross-section and width

● W'→tb

Br(ele.+neu.) : ~ 8.4 %

W' : generated mass distribution

Before event selection (from PYTHIA generated information)

W': PDF Influence (low tails)

✓ PDF heavily suppress high mass production region due to limitation of parton energy carried by quarks in Tevatron energy and this is also reported by D0 [PRL100, 031804]

W': MC Acceptance X Efficiency

W' signal and background

Search W' : Mt fitting

Search for excess in the m_T dist. over SM backgrounds

Variable Binned maximum likelihood method

$$\mu^{j} = \alpha_{0} \left[\sum_{i \neq jet} \mu_{i}^{j} + \beta \mu_{sig}^{j} \right] + \alpha_{jet} \mu_{jet}^{j}$$

- α_0, α_{jet} , and β are the parameters
- $\mu_i^j(\mu_{jet}^j)$ is the expected number of background(multijet)
- μ_{sig}^{j} is the expected number of $W' \to e\nu$ signal

Use Poisson probability with a Gaussian constraining on multijet bg

$$p(\alpha_0, \alpha_{jet}, \beta) = \left(\prod_j \frac{\mu_j^{n_o^j} e^{-\mu_j}}{n_o!}\right) \mathcal{G}(\alpha_{jet}, \sigma_{jet}),$$

where $\mathcal{G}(\alpha_{jet}, \sigma_{jet}) = \frac{1}{\sqrt{2\pi\sigma_{jet}}} \exp\left(-\frac{1}{2}\left(\frac{\alpha_{jet}-1}{\sigma_{jet}}\right)^2\right)$

• n_0^j is number of observing events

Mt Fitting Result

		1.1222/1 (11)	(2.21)			
	Events in m_T bins (GeV/c ²)					
	200 - 250	250 - 350	350 - 500	500 - 700	700 - 1000	
$W \to e \nu$	711^{+50}_{-50}	359^{+25}_{-25}	85^{+6}_{-6}	13^{+1}_{-1}	$1.1^{+0.1}_{-0.1}$	
Multijet	9^{+2}_{-2}	6^{+1}_{-1}	2^{+2}_{-2}	$0.2^{+1.6}_{-0.2}$	$0.01\substack{+1.10 \\ -0.01}$	
Other background	70^{+9}_{-6}	33^{+4}_{-3}	8^{+1}_{-1}	$1^{+0.1}_{-0.1}$	$0.09\substack{+0.01 \\ -0.01}$	
Total background	790^{+61}_{-58}	398^{+31}_{-30}	94^{+9}_{-8}	14^{+3}_{-1}	$1.2^{+1.2}_{-0.1}$	
Data	784	426	88	18	1	

Good agreement between the data and background expectation ✓ No statistically significant excess observed for W' and we set the mass limit for W'

Systematic Uncertainties

Total Uncertainties

CDF W′ → electron+MET : Limits

- Bayesian 95% CL limit calculated
- both the shape and rate systematic uncertainties are incorporated
- 1000 times pseudo experiment is performed for Expected Limits.
 - ✓ Used random generated events from the background expectation.

Sep072011,Yuchul Yang

p-p Collision at 7 TeV with 36 pb⁻¹ data (based on : PLB 698, 21 and arXiv:1012.5945)

Event Selection

Preselection

- ✓ Good primary vertex
- \checkmark At least 1 electron with $E_T > 25$ GeV and H/E < 0.1
- Used MET from particle flow algorithm Single electron trigger path ● 1 good high p_T electron (HEEP)

• Requirement : $\Delta \phi(ele, met) > 2.5,$ $0.4 < E_T^{ele} / MET < 1.5$

Background Estimation

- Need to determine both the shape and normalization of the transverse mass.
 - ✓ W → ele + neu. : Shape from MC, yield from data-driven (fit of E_T /MET method)
 - ✓ QCD multijet : Data-Driven Method
 - ✓ The other backgrounds from MC

background	shape	normalization
$W \rightarrow e + nu$	MC	Fit of E _T /MET
multijet	Non-isolated electron from Data	Fit of E _T /MET
Other backgrounds	MC	MC
Carl Andrew Contractor	and the second s	

W and QCD Background (Fit of E_T/MET)

 In two body decay, the energy of the neutrino and electron are expected to be mostly balanced in the transverse plane, and then the ratio of E_T is around 1

Background and Data Comparisons

Transverse Mass distributions

Good agreement in both background prediction and observed data in the M_T distribution(left) and the cumulative distribution(right)

The highest M_T Event Display

Systematic Uncertainties

Source of systematic error	Uncertainty	Signal	Total Bkg
Integrated luminosity	11%	11%	0.84%
Electron reco efficiency	1.9%	1.9%	0.14%
Electron ID efficiency	1.5%	1.5%	0.11%
Electron energy scale	1%(EB), 3%(EE)	0.4%	9.9%
$E_{\rm T}^{\rm miss}$ scale	5%	1.6%	1.4%
$E_{\rm T}^{\rm miss}$ resolution	10%	0.9%	0.5%
Cross section		10%	1.1%
Total (lumi not included)		10.5%	28.7%

Number of Event

Sample	$M_T > 45 GeV$	> 200	> 300	> 400	> 500	> 600
W ightarrow e v	75609.1± 319.0	33.7 ± 2.7	7.2 ± 0.9	2.5 ± 0.5	0.9 ± 0.3	0.6 ± 0.2
multi-jet	$7083.4 {\pm} 3546.1$	6.3 ± 3.3	1.6 ± 0.9	$0.5{\pm}0.3$	0.2 ± 0.2	0.2 ± 0.2
$t\bar{t}$	59.6 ± 23.4	$4.1\!\pm1.7$	0.6 ± 0.3	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0
W ightarrow au u	1082.9 ± 79.3	1.1 ± 0.3	0.2 ± 0.2	0.0 ± 0.1	0.0 ± 0.0	0.0 ± 0.0
Other bkg	359.1 ± 72.6	$2.0{\pm}0.4$	0.6 ± 0.1	0.2 ± 0.0	$0.1\!\pm 0.0$	0.0 ± 0.0
Total bkg	84194.2 ± 3563.3	$47.3{\pm}4.7$	10.2 ± 1.4	3.3 ± 0.6	1.2 ± 0.3	0.9 ± 0.3
Data	84468	38	8	2	0	0

* Other background : gamma+Jet, W→µv, Drell-Yan,WW,WZ,ZZ, single top
* Table includes both statistical and systematic uncertainties added in quadrature (does not include lumi uncertainty)

CMS W' \rightarrow ele+MET : Limits

- Bayesian 95% CL limit calculator.
 Cut-and-Count Method, cut point (> 0.5 TeV)from the best expected limit.

W' Limits (2010)

- ✓ $m_{W'}$ > 1.12 TeV/c² (5.3 fb⁻¹@CDF; W' → electron + neutrino) [PRD.83.031102]
- ✓ $m_{W'}$ > 1.49 TeV/c² (36 pb⁻¹@ATLAS; W' → electron/muon + neutrino) [arXiv:1103.1391]
- ✓ $m_{W'}$ > 1.58 TeV/c² (36 pb⁻¹@CMS; W' → electron/muon + neutrino) [PLB 698, 21]

CMS (1.1fb⁻¹;2011) : ele + MET

Figure 2: Transverse mass distribution (left) and cumulative distribution (right) for the electron channel.

CMS (1.1fb⁻¹;2011) : muon + MET

Figure 3: Transverse mass distribution (left) and cumulative distribution (right) for the muon channel.

W' Mass Limits : CMS (1.1fb⁻¹; EPS2011)

Summary

• Search for W' : performed at Tevatron and LHC experiments

No excess above SM background expectations is observed in collision data distributions

• $M_{W'} > 2.27 \text{ TeV/c}^2$ for ℓ +MET channel @CMS(1.1fb⁻¹)

Search for W' is ongoing at LHC (CMS and ATLAS)
 W' to electron + neutrino
 W' to muon + neutrino
 W' to top + bottom
 W' to WZ

Sep072011, Yuchul Yang

CDF Detector

- Tracking System
 - ✓ Silicon Detector
 - ✓ Central Outer Tracker
 - ✓ 1.4 T B-field
- Calorimeter
 - ElectroMagnetic
 - ✓ Hadron
- Muon Detection
- Trigger System
 - ✓ Level3 (25000/300/100 Hz)
 - ✓ High p_T Lepton
 - \checkmark Missing E_T
 - ✓ Jets

CMS Detector

