Top quark physics at CDF

Hyun Su Lee Korea University

On behalf of the CDF collaboration

Top quark observation

- Observed by both CDF and D0 at 1995
 - Top quark observation is the main goal of Tevatron (LHC is Higgs)
- Use ~20 top candidate events

Fermilab/Tevatron

Tevatron

1.96 TeV proton anti-proton collider 2nd highest energy (LHC 7TeV)

Collider Detector at Fermilab (CDF)

End of Tevatron and CDF

Tevatron shutdown at Sept/30/2011

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

End of Tevatron and CDF

Top quark

- Needed in theory as isospin partner of b-quark
- Properties well defined by standard model
- Mass (unknown) SM parameter

- As heavy as atom of gold
- Large mass defines its unique properties

- 1995 : Discovered 1995 by CDF and D0
 ~20 events
- Now :

Tevatron : Have an order of 1,000 events LHC : Have an order of 10,000 events

- Standard Model
 - Single or pair production
 - ✤ Electric charge : +2/3 e
 - Width : 1.4 GeV
 - 100% decay Wb
 - Life time : 0.5 e⁻²⁴ sec

- 1995 : Discovered 1995 by CDF and D0
 ~20 events
- Now :

Tevatron : Have an order of 1,000 events

LHC : Have an order of 10,000 events

- Standard Model
 - Single or pair production
 - ✤ Electric charge : +2/3 e
 - Width : 1.4 GeV
 - ✤ 100% decay Wb
 - Life time : 0.5 e⁻²⁴ sec

- 1995 : Discovered 1995 by CDF and D0
 ~20 events
- Now :

Tevatron : Have an order of 1,000 events LHC : Have an order of 10,000 events

- Standard Model
 - Single or pair production
 - ✤ Electric charge : +2/3 e
 - Width : 1.4 GeV
 - 100% decay Wb
 - Life time : 0.5 e⁻²⁴ sec

- 1995 : Discovered 1995 by CDF and D0
 ~20 events
- Now :

Tevatron : Have an order of 1,000 events LHC : Have an order of 10,000 events

- Standard Model
 - Single or pair production
 - ✤ Electric charge : +2/3 e
 - Width : 1.4 GeV
 - ✤ 100% decay Wb
 - Life time : 0.5 e⁻²⁴ sec

- Very short lifetime < hadronization time
- Unique to study bare quark

Production and decay

- Lepton+Jets
 - One W decay lepton+neutrino and the other decay two jets
 - ✤ BR ~40 %
- Dilepton
 - Both W decay lepton and neutrino
 - ✤ BR ~10 %
- All Jets
 Both W decay two jets
 BR~50%

Top quark mass measurement

Higgs mechanism

Why we measure the top quark mass?

- Predict SM Higgs boson mass
- If we found Higgs boson, we can test the SM

Top quark mass history

- Indirect prediction until 1995
- Very precision results are achived

Detection - Particle identification

Challenge of top reconstruction

- We measure the track and calorimeter response of charged particles
 - How well estimate energy of particle?
 - Jet energy scale
 In situ calibration using dijet of W decay
 - Neutrino can not be detected

□Missing energy

Which jet is coming from which parton?

Jet-to-parton assignment

Mass reconstruction

Lepton+jets channel (24 different combinatoric)

Measurement technique (template method)

- Identify variables \vec{x} sensitive to M_{top} (or JES)
- Using MC, generate signal distribution of \vec{x} as a function of M_{top} (or JES)
- Parametrize templates in terms of probability density function then assign the probability for certain mass and JES

Construct likelihood based on probabilities

Lepton+Jets channel

- 5.6 fb⁻¹ data 981 Candidate events requiring 1b-tag
- Applied chi2 cut(<9) and H_T (H_T >250GeV)
- Fully three dimensional PDF using three observables in LJ
 - ◆ 3rd observables is reconstructed mass using kinematic fit with different combinatoric of jet to parton assignment (2nd best fit)
- Matrix element technique
 - ✤ 173.0 ± 1.2 GeV/c²
 - Complement technique, consistent result

172.2 \pm 0.8 (stat) \pm 0.8(JES) \pm 0.9(syst) GeV/c² =172.2 \pm 1.5 GeV/c²

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

Dilepton channel

- 5.6 fb⁻¹ data 392 Candidate events
- No in situ JES calibration
- Two observables
 - Reconstructed mass using neutrino weighting algorithm (assuming neutrino eta's and give different weight)
 - mT2 interesting observables to measure the mass of two missing particle system (introduced for new physics particles)
- Best result at CDF
- Good Cross check in different channel

$\begin{array}{l} 170.3 \pm 2.0 \; (\text{stat}) \pm 3.1 \; (\text{syst}) \; \text{GeV/c}^2 \\ = 170.3 \pm 3.7 \; \text{GeV/c}^2 \end{array}$

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

Missing energy(MET)+jets final state

Top guark physics at CDF, Nov/ 2/ 2011 @ KISTI

- Topology based channel truth are mostly lepton+jets
- Very nice signal to background ratio and very nice signal acceptance

	Signal	Bkgd
Lepton+Jets	~900	~120
Dilepton	~170	~90
MET+Jets	~900	~400

 CDF only use this final state in top quark mass measurement

Missing Energy (MET)+Jets channel

- 5.7 fb⁻¹ data 1432 Candidate events requiring 1b-tag
- Three observables are used
 - ♦ Reconstructed hadronic top quark mass
 □Use the largest p_T of three jet
 - 2nd reconstructed hadronic top quark mass
 Use different combination
 - Dijet mass of two untagged jets
- Important input of combination
 Third most important channel

172.3 \pm 1.8 (stat) \pm 1.5 (JES) \pm 1.0 (syst) GeV/c² =172.3 \pm 2.6 GeV/c²

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

CDF & Tevatron combination

End run game of top mass

- Improvement of jet energy resolution
 - Already demonstrate jet resolution improvement about 20% by neural network
 - It is corresponding to 20% improvement
- Increase signal acceptance
 - Expand trigger path and lepton categories
 - Increase about 20% statistics using same data set
 - Improve event reconstruction
 - Already demonstrate better reconstruction method at MET+Jets
 - We can have ~30% better result in this channel

Forward backward (Charge) asymmetry

Forward backward asymmetry

Measurement

A_{FB} measurements at Tevatron

- Measured AFB is way far from standard model (approximately 3sigma off)
- We do not clearly know the source of new asymmetry
- Possible hints of new physics
 - Heavy particle (resonance) Axigluon, Z prime …
 - Heavy quark
 - Top prime

*

.

Mass difference of top and anti-top

t and t mass difference

- If CPT is conserved, ΔM_{top} should be zero (SM)
- Possible source of charge asymmetry
- We use similar technique to mass measurements

Short lifetime Top width

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

Why top quark width ?

• It is intrinsic parameter of SM

Very precise estimation using NLO calculation (~1% precision)

$$\Gamma_t = \Gamma_t^0 \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right]$$

✤ 1.3 GeV at M_{top} = 172.5 GeV/c²

• Deviation from SM indicate new physics

Charged Higgs decay, FCNC, and other exotic models

• Resolving Top quark life time

$$au = rac{\hbar}{\Gamma}$$
 Short life time (decay before hadronization)
Top quark width

Direct measurement

First direct hint of top decay before hadronization

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

 $0.3 < \Gamma_{top} < 4.4 \text{ GeV} @ 68\% \text{ CL}$

Spin Correlation

 Top quark decay before hadronization – Spin information of top quark passed to decay products

SM prediction
$$\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \approx 0.78$$

• κ is related with angles of decay products

Spin Correlation

 Top quark decay before hadronization – Spin information of top quark passed to decay products SM prediction $\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \approx 0.78$ Dilepton Lepton+Jets DØ Run II preliminary $\frac{1}{N}\frac{dN}{d(\cos\theta_{1}\cos\theta_{2})}$ 0.25 0.25 Unpolarized sample ----- tī, Pythia SM spin corr. OH basis template tī, Pythia no spin corr. 0.2 - SH basis template **Spin No Spin** 0.15 0.15 **Spin** No spin correlation... Correlated Correlation correlation 0.1 0.1 **K=1 κ=-1 K=1** K=-1 0.05 0.05 0.20.40.6 0.8 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 $\cos(\theta_1)\cos(\theta_2)$ $cos(\theta_l) cos(\theta_d)$

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

Spin Correlation

Lots of top quark studies at CDF

What we know about top quark from CDF

- Lots of top quark properties have been studied
- However, lots of measurements are limited by statistics of top quark
 - Will use full data set
- Need better machine
 - Large
 Hadron
 Collider

Korea University

CERN/LHC

LHC

- World best energy (7 TeV) proton-proton collider (designed to be 14 TeV)
- CMS is the one of two general purpose detector Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI Hyun Su Lee, Ko

LHC is the top factory

LHC & CMS operation

- Already accumulate more than 5 fb⁻¹ (2 times less than Tevatron)
- Next year ~20 fb⁻¹
- CMS already have ~10x more top events than CDF
- Lots of top properties can reach sensitive reason
 - Even precision measurement of the properties are possible

Top mass and mass diff. at LHC

 Already very small stat. uncertainty but, need better understanding of detector

Top $\Delta m_t = -1.20 \pm 1.21 \pm 0.47$ GeV, Already world best

Prospect of Top physics at LHC

- Already have ~10 times more ttbar events than Tevatron
- Precision measurement need better understanding of systematics
- Statistical uncertainty dominant analysis is already surpass Tevatron measurement
 - Mass difference
- In the near future, lots of properties are well understood with LHC data

Conclusion

- Understanding of top quark are very important and very active field
- Tevatron have made very important understanding of top quark

Will have final measurement using full data (~2 times more data)

• LHC will bring new era of top quark understanding

Stay tune

Backup

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

W Helicity

- The SM top decays via EW interaction
 ♦ Top decays as a bare quark ⇒ spin information transferred to final state particles

Measuring the fraction of longitudinally polarized W 8.0 0 0 0 0 0.6 bosons ЧP lonaitudina right handed • Reconstructed $\cos\theta^*$ sum (SM) θ^* 0.4 b 0.2 W+ 0 0.5 -0.5 0 -1 $\cos \theta$ La Thuile 2011, Hyunsu Lee, The University of Chicago

W Helicity

Analysis method

 Same template with top quark mass measurement but different signal samples (varying top width)

• RMS of reconstructed top mass is measure of top width

Update of top width measurement (4.3 fb⁻¹)

In situ JES calibration using W_{ii}

• 2D fit was done

Systematic Effects	Meas. mean top width shift(GeV)	
Jet Resolution	1.1	
Residual JES	0.3	
Generator	0.4	
PDF	0.3	
B Jet Energy	0.2	
LI Background	0.1	
gg Fraction	0.3	
IFSR	0.2	
Lepton Energy	0.2	
Color Reconnection	0.9	
Multi. Had. Int.	0.3	
Total Systematic	1.6	

Top quark width measurement with 4.3 fb⁻¹

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Top quark width measurement with 4.3 fb⁻¹

$0.3 \text{ GeV} < \Gamma_{top} < 4.4 \text{ GeV} @ 68\% \text{ CL}$

Hadronization time scale ~0.2 GeV

At 68% CL, this result support that top quark decay before hadronization

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Why mass difference?

Our top mass precision allow to test mass difference between top quark and anti top quark

New observed asymmetry between top and anti-top may be explained by mass difference

This is testing CPT theorem

- ✤ Well tested in meson, baryon, and boson
- Not very well in quark and high mass particles
- ♦ Do 1fb⁻¹ measurement using ME technique (Updated with 3.6 fb⁻¹) $\Delta M = 3.8 \pm 3.7 \text{ GeV/c}^2$

We modified usual kinematic fitter to allow mass difference in the lepton+jets channel

Two observables (best, 2nd best)

Event Reconstruction

We modified nominal kinematic fitter to get mass difference

$$\chi^{2} = \Sigma_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} + \Sigma_{j=x,y} \frac{(U_{j}^{fit} - U_{j}^{meas})^{2}}{\sigma_{j}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{\ell\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{b\ell\nu} - (172.5 + dM_{reco}/2))^{2}}{\Gamma_{t}^{2}} + \frac{(M_{b\ell\nu} - (172.5 - dM_{reco}/2))^{2}}{\Gamma_{t}^{2}} + \frac{\Delta m_{reco} = -Q_{lepton} \times dM_{reco}}{\Delta M_{reco}}$$

 This variable is corresponding to top quark mass minus anti-top quark mass in reconstruction level

Shape of reconstructed mass diff.

- We use the lowest and 2nd lowest variables to measure the mass differences
 - ✤ ~10% improvement by using 2nd observable

Method checks

- We assumed the averaged top quark mass as 172.5GeV/c²
- Working properly NO Bias
- We increase uncertainties by 4% based on pull widths

Data fit and results

 ~ 2sigma deviation from standard model Phys. Rev. Lett. 106, 152001 (2011)

-3.3
$$\pm$$
 1.4 (stat) \pm 1.0 (syst) GeV/c²
=-3.3 \pm 1.7 GeV/c²

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Higgs production associated with ttbar

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

ttH production at Tevatron and LHC

- Very small cross section at Tevatron
- However it may be discovery channel at LHC
- Interesting to study yugawa coupling between top and Higgs boson
- New physics can enhance ttH production about 2 order Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI Hyun Su Lee, Korea University

ttH search @ no lepton channel (5.7 fb⁻¹)

- Complementary analysis with lepton channel
- It include not only missing energy+jets final state but also all jets final state
- Results are compatible with lepton channels
- Limit: 22.9(Exp)/31.4(Obs) x
 σ_{SM} for M_H=120 GeV/c²

Limit: 12.7(Exp)/27.4(Obs) x σ_{SM} for M_H=120 GeV/c² Lepton channel @ 7.5 fb⁻¹

· First search of this final state

Publication is in preparation

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

CDF combination of Higgs boson limit

• Our result was included in this combination

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Systematics uncertainty

CDF II Preliminary 5.6 fb^{-1}		
Systematic	Result (GeV/c^2)	
Signal Modeling	0.7	
JES	0.2	
PDFs	0.1	
b jet energy	0.1	
b/\bar{b} asymmetry	0.3	
Background shape	0.2	
gg fraction	0.1	
Radiation	0.1	
MC statistics	0.1	
Lepton energy	0.1	
MHI	0.4	
Color Reconnection	0.2	
Total systematic	1.0	

- Very similar way with other top properties
- Possible b/bbar(lepton/anti-lepton) difference was added

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

m_{T2} at dilepton channel

It was introduced for the mass determination of new physics particle

 We firstly use this interesting observable in real data

Phys. Rev. D 81 031102 (2010)

b-tagging

. .

.

- B hadron can be identified by long displacement
- b tagging reduce # of jet-to-parton assign.
 Ex) lepton+jets channel

24 (0-btags), 6(1-btags), 2(2-btags)

• b tagging improve signal to background ratio significantly – 40% effi., 0.5% fake

Sample	Di-lepton	Lepton+jets	All Hadronic
	(\mathbf{e},μ)	(\mathbf{e},μ)	NN selection
0-b-tags S/B	1:1	1:4	1:20
1-b-tags S/B	4:1	4:1	1:5
2-b-tags S/B	20:1	20:1	1:1
Events in 1 fb^{-1}	25	180	150 (2 b-tags)
$(\geq 1 \text{ b-tag})$			60

Residual on JES

No significant shape on residual

Data and Fit (LJ)

Data and Fit (DIL)

Feldman-Cousins method

Coverage with different JES

Data fit

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee, Korea University

Truth mass dependence

• We perform bias check with different truth top quark mass with $\Delta M_{top} = 0 \text{ GeV/c}^2$

Otag : Data distribution

1tag : Data distribution

2tag : Data distribution

pT balances and assigning systematics

Good agreement between data and MC Averaged deviation = -0.44 +-0.40% If we consider anti-tagged(~20%) events, we can assign 0.73% deviation as systematic

B-tagging check for each flavor

 Use dijet sample from low pt muon triggered data and MC (We require exactly two tight jet in offline)

Tagged jet : SECVTEX tag + soft muon tag

Away jet : jet PT>20GeV

 Depending on charge of soft muon, we can have b or anti b enriched samples

pT distribution of away jets

pT distribution of away b-jets(btagging)

B tagging efficiency comparison for two samples

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Zoomed plot

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

More pure samples

Tagged jet : SECVTEX tag + soft muon tag

Away jet : jet PT>20GeV+soft muon tag

- ~60% of correct b events without btagging but low statistics
- Generally good in agreement

m_{T2} in dilepton channel (3.4 fb⁻¹)

- m_{T2} was introduced for mass determination of new physics particle pair productions
- We use it as 2nd observable and improve ~15% statistical uncertainty

$$m_{T2} = \min[\max(m_{T(1)}, m_{T(2)})]$$
$$q_T + p_T = missing p_T$$

We use m_{T2} first time in data (3.4 fb⁻¹)

Phys.Rev.D 81 (2010) 031102

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Top quark Production and decay

Top quark study (Production)

Top quark study (Decay)

Top quark study (Search)

Top quark study (Properties)

Top quark study

Where we stand (CDF) now

 Today's topic (my analysis)

Vtb = 0.91 ± 0.11 (exp) ± 0.07 (theory)

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Where we stand (CDF) now

Vtb = 0.91 ± 0.11 (exp) ± 0.07 (theory) 95% CL upper limit on BR: 90 < H⁺ < 150 GeV ~2sigma deviation $M_t = 172.8 \pm 0.9_{stat} \pm 0.8_{sys} \text{ GeV/c}^2$ BR(t→Zq) < 3.7% at 95% CL Mass difference $F_0 = 0.62 \pm 0.11$ & $F_+ = -0.04 \pm 0.05$ Ft < 7.5 GeV at 95% CL Exclude q = -4/3 at 95%CL 95% CL upper limit on BR: 115 < Mstop < 185 GeV q`, I Fourth generation top M_E < 335 GeV at 95% CL q`, l' b $F_{gg} = 0.07 + 0.15 = 0.07 \text{ (stat+sys)}$ $\sigma_{tt} = 7.5 \pm 0.48 \text{pb}$ F/B asymmetry $A_{fb}^{lab} = 0.19 \pm 0.07_{stat} \pm 0.02_{sys}$ $\sigma_{tt+j} = 1.6 \pm 0.2_{stat} \pm 0.5_{sys} \text{ pb}$ Mz < 805 GeV at 95% CL $\sigma_t = 2.76 \pm 0.53 \text{pb}$ Spin Correlations $K = 0.6 \pm 0.5_{stat} \pm 0.2_{sys}$

Top quark physics at CDF, Nov/ 2/ 2011 @ KISTI

Hyun Su Lee,

Korea University

Top quark

5 orders of magnitude!