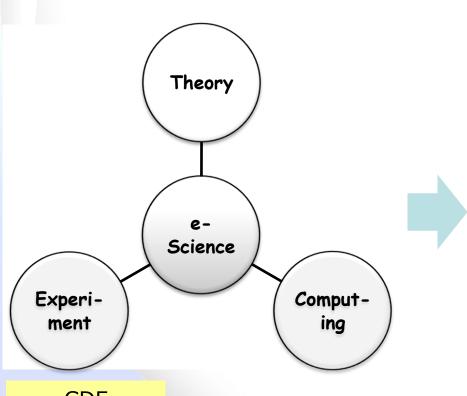
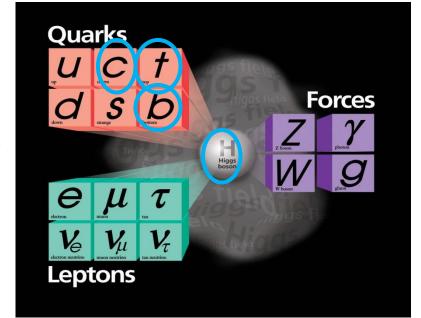


e-Science paradigm for Flavor Physics in the LHC era

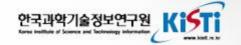
조기현, 김정현, 남수현, 김영진, 배태길 High Energy Physics Team KISTI (Korea Institute of Science and Technology Information)


Abstract


We introduce the e-Science paradigm of experiment-computing-theory. We apply this concept to flavor physics in the LHC era. There are a few interesting results from flavor physics experiments of lepton and/or hadron colliders indicating hints of something unknown. It may provides us with a clue of beyond Standard Model.

e—Science paradigm of experiment—theory—computing

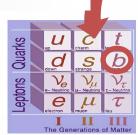
To probe the Standard Model and search for New Physics


CDF Belle/Belle II

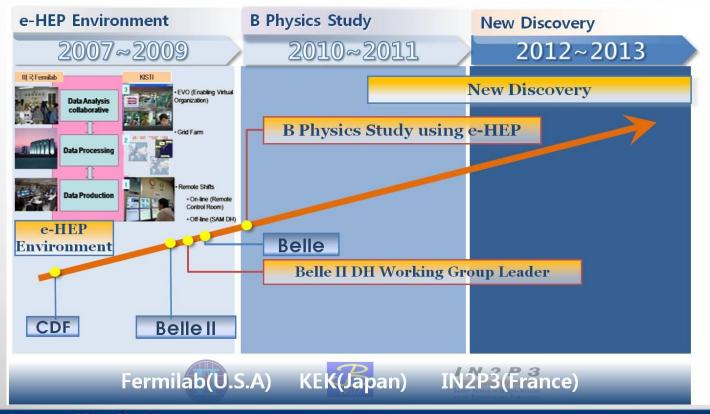
cf. LHCb

K.Cho and H.W.Kim, JKPS (2009)

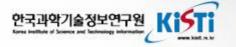
e-Science


Contents

To study Flavor physics both in experiments (Belle & CDF) and theories


Goal

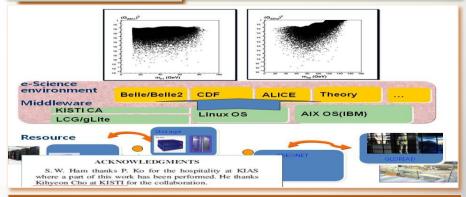
To probe the Standard Model and search for New Physics


⇒ New Discovery

High Energy Physics

e-Science for HEP (High Energy Physics)

To study high energy physics anytime anywhere even if we are not on-site (accelerator laboratory)



- 1. Data production
- CDF Remote Control Room @KISTI
- 2. Data processing
- Pacific CAF(CDF Analysis Farm)
- **⇒ North America CAF @KISTI**
- 3. Data Analysis Collaboration
- EVO servers @KISTI
- 4. Belle II Data Handling System
- Working Group Chair (K. Cho)

Ex) A study of Higgs model using cyberinfrastructure @KISTI

Why Flavor Physics?

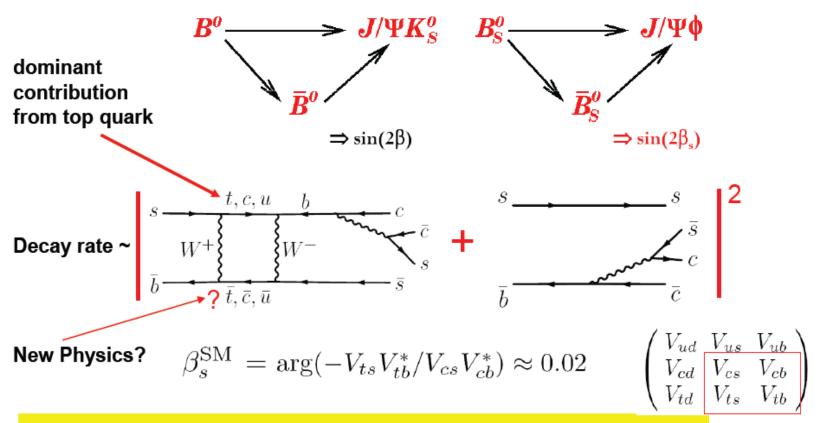
KiSTi

s

Not so near future!!

Observable	Approximate	Present	Uncertainty / number of events	
Observable	SM prediction	status	Super- $B (50 \mathrm{ab^{-1}})$	LHCb (10fb^{-1})
$S_{\psi K}$	input	0.671 ± 0.024	0.005	0.01
$S_{\phi K}$	$S_{\psi K}$	0.44 ± 0.18	0.03	0.1
$S_{\eta'K}$	$S_{\psi K}$	0.59 ± 0.07	0.02	not studied
$\alpha(\pi\pi, \rho\rho, \rho\pi)$	α	$(89 \pm 4)^{\circ}$	2°	4°
$\gamma(DK)$	γ	$(70^{+27}_{-30})^{\circ}$	2°	3°
$S_{K^*\gamma}$	$\text{few} \times 0.01$	-0.16 ± 0.22	0.03	_
$S_{B_s \to \phi \gamma}$	$\text{few} \times 0.01$		_	0.05
$\beta_s(B_s \rightarrow \psi \phi)$	1°	$(22^{+10}_{-8})^{\circ}$		0.3°
$\beta_s(B_s \to \phi \phi)$	1°	_		1.5°
$A_{ m SL}^d$	-5×10^{-4}	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	10^{-3}
A_{SL}^{s}	2×10^{-5}	$(1.6 \pm 8.5) \times 10^{-3}$	$\Upsilon(5S)$ run?	10^{-3}
$A_{CP}(b o s\gamma)$	< 0.01	-0.012 ± 0.028	0.005	_
$ V_{cb} $	input	$(41.2 \pm 1.1) \times 10^{-3}$	1%	_
$ V_{ub} $	input	$(3.93 \pm 0.36) \times 10^{-3}$	4%	_
$B \to X_s \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%	
$B \rightarrow \tau \nu$	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%	_
$B o X_s u ar{ u}$	3×10^{-5}	$< 6.4 \times 10^{-4}$	only $K\nu\bar{\nu}$?	_
$B \rightarrow X_s \ell^+ \ell^-$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%	not studied
$B_s \rightarrow \tau^+ \tau^-$	1×10^{-6}	< few $%$	$\Upsilon(5S)$ run?	_
$B \rightarrow X_s \tau^+ \tau^-$	5×10^{-7}	< few %	not studied	_
$B \rightarrow \mu \nu$	4×10^{-7}	$< 1.3 \times 10^{-6}$	6%	_
$B \rightarrow \tau^+ \tau^-$	5×10^{-8}	$< 4.1 \times 10^{-3}$	$O(10^{-4})$	_
$B_s \rightarrow \mu^+\mu^-$	3×10^{-9}	$< 5 \times 10^{-8}$		$> 5\sigma$ in SM
$B \rightarrow \mu^{+}\mu^{-}$	1×10^{-10}	$< 1.5 \times 10^{-8}$	$< 7 \times 10^{-9}$	not studied
$B \rightarrow K^* \ell^+ \ell^-$	1×10^{-6}	$(1 \pm 0.1) \times 10^{-6}$	15k	36k
$B \to K \nu \bar{\nu}$	4×10^{-6}	$< 1.4 \times 10^{-5}$	20%	

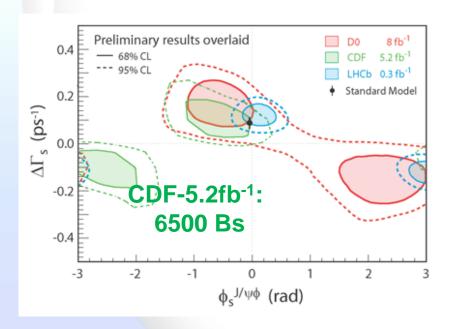
Flavor Physics @ KISTI



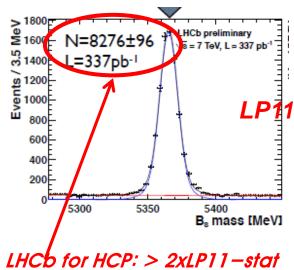
Physics	Experiments	Theories	
Kaon Semi-leptonic Form factor	Belle	LGT using Staggered Fermion	
	. RUE	T. Bae, Work in progress	
Rare B ⁰ decays	Belle Belle	Left-Right models	
	J.H.Kim, et. al. Belle (2011)	Sh Nam, Work in progress	
Mixing and CPV on Bs \rightarrow J/ ϕ ϕ	CDF (co II. 1.16 (d. = 230 p.m) (d. = 230 p	Left – Right models	
Top Forward—backward asymmetry	CDF	Model independent Analysis Sh Nam. et.al, PLB 691, 238 (2010)	
CP violating dimuon charge asymmetry	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Left-Right models	
due to B mixing	B' X	S -h Nam, Work in progress	

CP violation on Bs $-> J/\psi \phi$

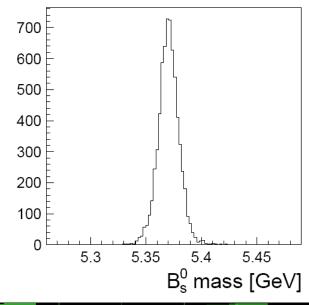
Analogous to the neutral B^0 system, CP violation in B_s system is accessible through interference of decays with and without mixing:

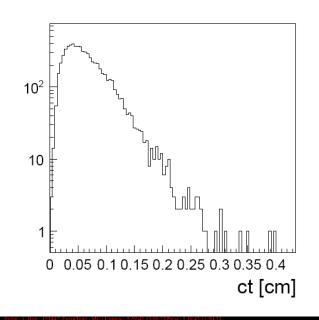


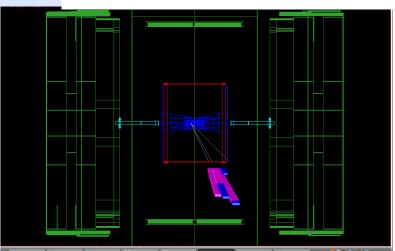
- CP violation phase β_s in SM is predicted to be very small, $O(\sin^2\theta_c)$
- New physics particles running in the mixing diagram may enhance $oldsymbol{eta_s}$

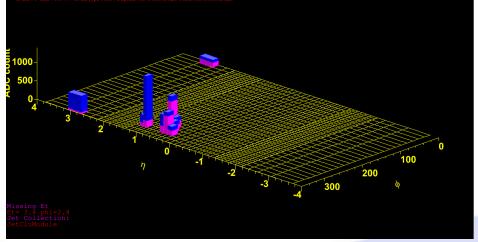

Analysis of TTT data

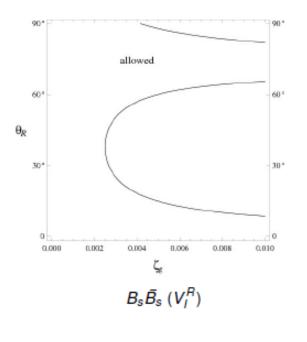
- The TTT data brings addition (65-70%) to the dimuon sample.
- => CDF is still competitive with the LHCb latest results for this year (HCP).

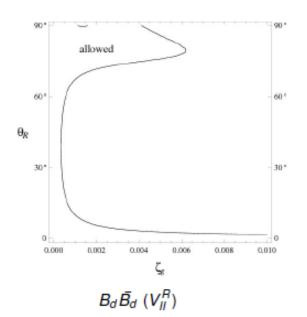



- To apply a similar analysis to the dimuon data
 - => to produce results for both data streams
- To expect O(15K) Bs (or may be even more) combining both dimuon and TTT data.



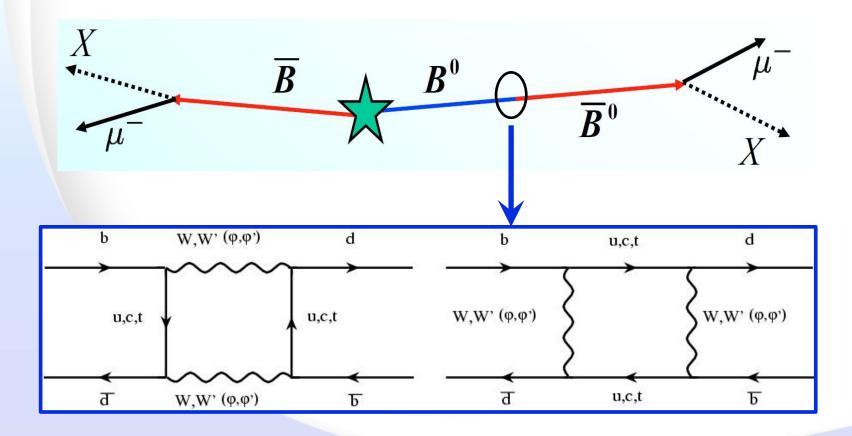

TTT MC Generation





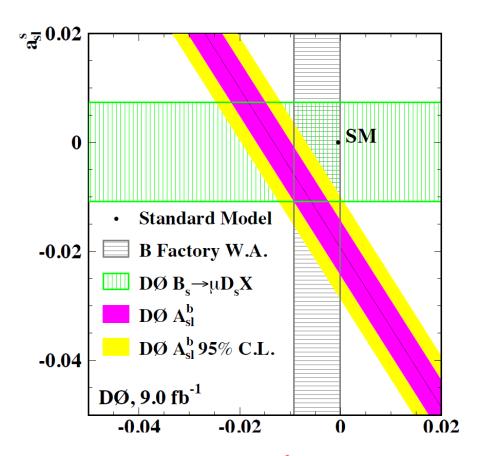
${m B}{m B}$ Mixing @ KISTI

• Contour plot corresponding to $0.7 < |1 + r_{LR}| < 1.3$ for $\zeta_g = 2\xi_g$ and $\alpha_{2,3,4} = 120^\circ$:



- Right-handed currents cannot significantly contribute to ΔM_{B_d} and ΔM_{B_s} simultaneously.
- ⇒Currently working on Bs mixing

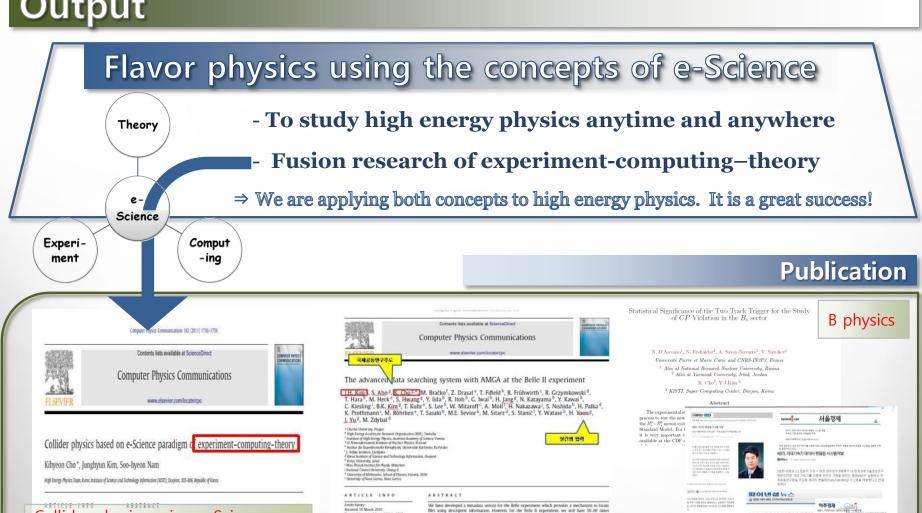
Same sign dileptonic asymmetry



- Another way to probe B0 B0bar mixing
- D0 experiment

Same sign dileptonic asymmetry

• This measurement (2011) with 9.0 fb⁻¹: $A_{\rm SI}^b = (-0.787 \pm 0.172 \; ({\rm stat}) \pm 0.093 \; ({\rm syst})) \; \%$, 3.9σ from SM.


Using Left-Right model

To be submitted to "CP violating dimuon charge asymmetry in the LR model" by S.—h. Nam

Summary

Output

Leading Belle II Data Handling Working Group which consists of more than 30 persons from 12 countries

theory

Collider physics using e-Science paradigm of experiment-computing-

Thank you.