과학벨트 중이온가속기(KoRIA)의 활용 연구 계획

2011. 6. 3

김 용 균 (한양대학교) On behalf of KoRIA User Community

우주의 신비

Korea Rare Isotope Accelerator (KoRIA)

세계 최고수준의 독창성을 가진 한국형 희귀동위원소 가속기

KoRIA 사용 연구 계획의 기본 방향

- ☆ 세계 최고의 희귀동위원소 가속기 시설을 이용하여 다양한 분야에서 첨단 과학을 연구하는 프로그램
 - ✓ 20대 미해결 과학 난제 해결과 관련된 검증 실험 반영
 - ✓ 새로운 원소의 발견과 같은 혁명적인 연구결과로 노벨상
 수상 수준의 기초연구 수행
 - ✓ 새로운 반도체 및 고온 초전도체와 같은 신물질의 개발
 및 특성 연구로 국가 산업 경쟁력 강화
 - ✓ 방사성 폐기물 처리기술과 암 치료 기술로 미래 에너지 개발 및 인간 복지 증진에 기여
- ✤ 기초 및 응용 과학 분야에서 선도적 연구로 <mark>과학 국가로서</mark> 위상이 격상될 것으로 기대됨

왜, 희귀동위원소인가?

희귀동위원소 생성 방법

빔 특성 양호

ISOL direct fission target

	Beam	Target (cm)	Target + Dump (cm)
HRIBF-ORNL	p, 40 MeV, 10 µA, 0.4 kW	5	11
SPES-LNL	p, 40 MeV, 200 μA, 8 kW	12	16
KoRIA	p, 70 MeV, 1 mA, 70 kW	30	45

7

KoRIA RI Beam 강도 비교 ISOL & IFF

Facility RI	<mark>ISOL</mark> (pps)	In-Flight Fragmentation (pps)	comment		
¹⁵ O	5x10 ⁸ * ¹⁹ F(p,αn), LiF pressed powder	To be estimated	Nuclear astrophysics		
⁹⁴ Kr	4x10 ⁹	4x10 ²	Nuclear structure		
¹⁰⁹ Y	2x10 ⁵	<10 ²	New discovery at RIKEN		
¹¹⁷ Mo	Not available due to low vapor pressure	<10 ³	New discovery at RIKEN		
¹³² Sn	9x10 ⁸	2x10 ⁵	Double magic		
¹⁴² Xe	1x10 ¹⁰	1x10 ⁴	Symmetry energy		
¹⁴⁴ Cs	7x10 ⁸ 3x10 ⁴		Nuclear astrophysics		
ISOL Calculation I • Beam: proton of • Target: UC ₂ of 2 IFF Calculation by • Beam: ¹³⁶ 54Xe of	by Dr. B. H. Kang (Hanyang Univ.) f 70 MeV and 1 mA .5 g/cm ³ and 3 cm thickness P Dr. C. C. Yun (Chung-Ang Univ.) f 200~300 MeV/u and 5 pμA	IFF Calcula • 4.9x10 ⁸ o • 7.8x10 ⁶ o	tion by KAPRA f ¹³² Sn produced at Target f ¹³² Sn separated at IF separator		

KoRIA의 기본 제원

- High intensity **RI** beams by **ISOL** & **IFF**
 - 70kW ISOL from direct fission of 238 U induced by 70MeV, 1mA protons $\rightarrow \sim$ MW ISOL upgrade
 - 400kW IFF by 200MeV/u, 8pμA ²³⁸U
- High energy, high intensity & high quality neutronrich RI beams
 - ¹³²Sn with ~250MeV/u, up to 9x10⁸ pps
- More exotic RI beams by ISOL+IFF+ISOL(trap)
- Simultaneous operation modes for the maximum use of the facility

KoRIA user community

KoRIA의 연구 영역 특성

중이온 핵반응 실험

KoRIA의 주요 연구 분야

새로운 기본 원소의 발견

✤목표:

우주 원소지도의 완성

새로운 동위원소 발견

중성자 과잉 동위원소 특성 연구

- ◆ 중성자 과잉 동위원소에서의 새로운 현상
 - KoRIA에서 생성된 중성자 과잉 듣는선 근처의 핵종 빔을 이용하여 핵의 구조와 핵반응 통한 물리적 특성 연구 가능.
 - 달무리 핵과 같은 새로운 원자핵 구조 탐색 및 기존 모델 한계 제시.

섬광검출기를 이용한 핵반응 측정 시스템 개략도

우주, 별의 진화과정 연구

17

➢ 희귀 동위원소 가속기를 이용하여 우주에서 일어나는 핵 반응 연구 가능 → 핵 합성 실험을 통한 우주와 별의 진화과정 규명

핵의 대칭 에너지 연구

원자 포획을 이용한 RI 연구

✤ 정밀 레이저 분광 기술

- 핵의 스핀과 자기 쌍극자 모멘트 측정과 같은 핵 구조 연구
- 핵의 질량 측정과 핵 구조 연구를 이용한 천체 핵 합성 과정 탐구

정밀 질량 측정

- 이온 포획 (Penning Trap)을 통한 희 귀동위원소의 질량 정밀 측정
- 핵의 질량을 측정으로부터 산출된 결합에너지를 이용한 특이한 구조의 핵 결합과 핵의 표준모델 연구

첨단 암치료 기술 개발

생명 과학과 DNA 구조 연구

생명 과학이란? 생명체와 환경간의 상호작용 연구

방사선 생물학

- 전리 방사선이 생물체에 미치는 상호작용을 연구
- 세포에 방사선 조사시 DNA 변화로 돌연변이 유발 가능

중이온 빔 활용 연구

- 생체 조직 구조 분석과 생물학적 변화에 대한 연구
- 과실, 채소 등 품종의 구조 변화 및 성장 특성 연구

|대 효과

- 새 유전자 발견, 단백질 기능 규명, 뇌 과학 연구 기반 - 첨단 바이오 연구를 통한 새로운 산업 분야 창출

유전자 변이 과정

초미세 구조 및 나노 물성 연구

◆ 미세 구조 물성 연구 및 핵구조 연구용 실험시설 구축

- 펨토(10⁻¹⁵)미터 크기의 중이온을 이용한 초정밀 나노 과학 연구
- β-NMR(핵자기공명), ERD 시스템과 같은 초미세 구조 계측 시스템 구축
- 초 미세구조 계측 및 제어 시스템을 이용하여 초정밀 반도체, 고온 초전도체와 같은 신소재 개발

리소그라피 (LIGA)로 제작된 톱니바퀴 (반경 100 μm)

RI 빔 조사를 통한 나노 입자 흡착 방법과 실례

M. S. Raghuveer, et al. Adv. Mater. 18, 547 (2006)

박세환, 김기동, 물리학과 첨단기술, 12월호, 12 (2009)

신소재 반도체 개발

✤ 희귀동위원소 주입 반도체 기술 개발

- 반도체 내부의 전자기적 구조 이해
- 미세 불순물(dopant)의 격자 구조 연구
- 미세 결합 구조 및 확산 특성 파악

-

신소재 초전도체 개발

✤ 전기 저항이 "0"인 초전도체 연구

- 자성 물질내에서의 공명 이동과 같은 특수현상 이해
- 융합 금속산화물의 위상 융합에서의 나노 스케일 해석
- 고온(약 70 K) 초전도체 연구

핵 반응 단면적 측정

- ✤ 가속시킨 입자들을 각각 목적에 맞는 표적과 충돌시켜 발생한 이차 입 자들의 특성을 조사
- ✤ 중성자 비행시간측정법을 통하여 핵자료 측정

연구 주제와 RI 빔 (I)

Research group	Research topics	Energy & current of Ri s
Nuclear Structure / Nuclear Chemistry	 exotic nuclei near the neutron & proton drip line Isomer research Super heavy element (ex, Koreanium) 	 Unstable: 20Ca, ⁸⁴32Ge, 36Kr, ¹³²50Sn, 54Xe Stable: ⁷⁶32Ge, ⁸⁶36Kr, ¹³⁶54Xe, ²³⁸92U 0 ~ 200 MeV/u, > 0.1 nA (10⁹ pps)
Nuclear Astrophysics & Nucleosynthesis	 Breakout reaction from Hot-CNO cycle to rp-process Nucleonsynthesis contribution of isomers Important constraint on core-collapse supernova model 	•Unstable: ${}^{15}_{8}$ O, ${}^{26m}_{13}$ Al, ${}^{45}_{23}$ V, ${}^{62-66}_{32}$ Ge, ${}^{46-52}_{12}$ Mg, ${}^{132}_{50}$ Sn, ${}^{134}_{52}$ Te, ${}^{140,144}_{54}$ Xe, ${}^{194-196}_{75}$ Re, ${}^{198,202}_{77}$ Ir, ${}^{195}_{69}$ Tm • Stable: ${}^{23}_{11}$ Na, ${}^{134-135}_{55}$ Cs • O~10 MeV/u and few hundreds MeV/u 0.1 nA ~ 1 μ A (10 ⁶ ~ 10 ¹³ pps)
Nuclear Matter	 Symmetry energy in astro- & nuclear physics Neutron skin thickness Isovector giant dipole resonance Collective flows in HI collisions, and etc. 	 All ions from H to U, (H, ¹³²₅₀Sn, ¹⁴⁰₅₄Xe, ²³⁸₉₂U) 0 ~ 200 MeV/u, > 10⁹ pps
Nuclear Theory	 Nuclear reactions by neutrinos in supernovae Nucleosynthesis of proton capture in stars Superburst in neutron star Study for the crust of neutron star 	 ¹⁸⁰Ta (beta decay of ¹⁸⁰Ta) ¹³N (¹³N(p, γ)¹⁴O reaction) ²³Mg or ²³Na (²³Mg + n reaction) ²⁰⁸Pb (Reaction by ²⁰⁸Pb beam)
Medical & Bio application	 Effect on human body by HI Radiobiology research with HI beams Radiation therapy with HI beams Industrial applications with HI beams 	• Unstable: μ , ${}^{11}{}_{6}C$ • Stable: p, ${}^{4}{}_{2}He$, ${}^{12}{}_{6}C$, ${}^{16}{}_{8}O$, ${}^{20}{}_{10}Ne$, ${}^{28}{}_{14}Si$, ${}^{35}{}_{17}Cl$, , ${}^{40}{}_{18}Ar$, ${}^{48}{}_{22}Ti$, ${}^{56}{}_{26}Fe$, ${}^{131}{}_{54}Xe$, 10 ~ few hundreds MeV, 0.1 nA ~ 1 uA

Notation: Stable, neutron-deficient, neutron rich RIs, and **µ**

KoRIA user community

연구주제와 RI 빔 (II)

Research group	Research topics	Energy & current of RI s
RI Material Research	 New material and its properties with β-NMR Elastic Recoil Detection (ERD) system Radio isotope ions production by using laser 	• Unstable: ${}^{8}_{3}$ Li, ${}^{11}_{4}$ Be, ${}^{15,19}_{8}$ O, ${}^{17}_{10}$ Ne, ${}^{62}_{30}$ Zn, ${}^{77}_{33}$ As, ${}^{99}_{41}$ Nb, ${}^{99}_{43}$ Tc, ${}^{100}_{46}$ Pd, ${}^{117}_{48}$ Cd, ${}^{111,117}_{49}$ In, ${}^{131}_{52}$ Te, ${}^{140}_{59}$ Pr, ${}^{172}_{71}$ Lu, ${}^{181}_{72}$ Hf, ${}^{187}_{74}$ W, ${}^{199}_{81}$ Tl, ${}^{204}_{83}$ Bi few tens keV ~ 10 MeV, 15~30 nA • Stable: p 50 and 600 MeV, >30 μ A
Nuclear Data	 Nuclear data with fast neutron Nuclear data with neutron from nuclear fragmentation Nuclear data with charged particles 	 Stable: p, d, ^{3,4}₂He 10 ~ few hundreds MeV/u > few mA Actinide (Z=89~103) ion beams, 2~10 MeV/u, > few mA Nuclear fragments (W, Ta, Pb, etc), few hundreds MeV, > few mA
Atom traps for RI research	 Precision mass measurement Precision laser spectroscopy 	• Unstable: ¹¹ ₃ Li, ^{11,14} ₄ Be, ⁸ ₅ B, ^{10,19} ₆ C, ¹⁷ ₁₀ Ne, ³⁴ ₁₇ Cl, ⁶² ₃₁ Ga, ⁷⁴ ₃₇ Rb, nuclei (Z=82) near n-rich drip line 40 ~ 100 keV/u, 20,000 pps

KoRIA user community

최우선 수행할 연구 주제(안)

Working Group	High priority experiment
Nuclear Structure	Topic: Evolution of shell structure in neutron rich nuclei Facility: Multi-Purpose Spectrometer with Gamma ray spectroscopy Exp: Shell structures of neutron rich Ca isotopes
Nuclear Astrophysics & nucleosynthesis	 Topic: Study of astrophysically important neutron capture reactions near ¹³²Sn Facility: KRS Exp: measurement of (d,p) – transfer reactions to determine (n,γ) reaction rates along the r-process path with ^{130,131,132}Sn of >10⁵pps and ~10MeV/nucleon
Nuclear Matter	Topic: Nuclear symmetry energy Facility: LAMPS Exp: Nuclear collision experiment with ¹³² Sn of ~250 MeV per nucleon
Medical Science	Topic: Overcoming radioresistance of cancer cells by using heavy ions Facility: GSI or HIMAC Exp: Differential expression of genes by x-ray and carbon beam in cancer cells
Bio Science	Topic: Heavy ion beam-induced cellular response Facility: Bio irradiation facility Exp: Overall molecular response of normal and tumor cells including DNA repair mechanism after beam irradiation of ¹² C, Ar, Ne, and etc.
Material Science I	Topic: Hyperfine interactions in magnetic material Facility: <mark>β-NMR</mark> Exp: β-NMR experiment with polarized ⁸ Li beam
Material Science II	Topic: ERD Facility: KoRIA ERD Exp: Evaluation of analytical resolution for KoRIA ERD
Nuclear Data	Topic: Measurement of nuclear data using fast neutron Facility: Fast neutron beam line + detector system Exp: Measurement of ⁵⁶ Fe inelastic scattering cross section
Atomic Physics	Topic: Ion trap and laser spectroscopy for nuclear structure Facility: Penning trap mass measurement and collinear laser spectroscopy system Exp: Precision mass measurement and laser spectroscopy around doubly magic ¹³² Sn

중이온 가속기 사용자 그룹 (2011. 1. 현재)

8개 연구 소그룹 내 박사급 : 68명, 대학원생 : 43명

총괄 (한양대	괄 (한양대) 김용균 천병구, 강병휘, 류민상, 강상묵, 장도윤, 토마스, 이승규, 박병현, 강정수, 조광호, 신복균, 김성현, 수(4/10)						김성현, 이인			
연구주제	Nuclear as structure &		Nuclear astrophysics & synthesis		Symmetry energy	Supernova & Astrophysics theory	Medical & Bio Application	RI Material Research	Nuclear Data	Atom traps for RI research
그룹 대표자	최선호		문창범		현창호	천명기	박우윤	박세환	이영욱	유대혁
소속기관	경북대, 서울대 등		호서대 등		경북대, 대구대 등	숭실대	충북대 등	KAERI KIGAM	KAERI 등	KRISS 등
참여 연구원	서울대 등 유인권 스테파냔 사또 이경세 *하은자 에브게니 도호석 이준규 손창욱 오근억 송지혜 김희경 (6/8) *2개 연구 그룹 참여		한인식 이주한 권영관 문준영 윤종철 김아람 김은희 박준식 (6/3)		등 0 년 ॥ 이수형 류충열 김현철 #하은자 김은주 (3/0) 안정근 28석 이강석 이강석 이강석 이희정 홍병식 정혁준, 정지혜 김관범, 김상호 박진용, 정주현 유선영, 조희석 김성준, 이광현 백믿음, 최봉혁 주은아, 백광윤 장진희, 황상훈 심현하, 이재기		안용찬 김인규 김국찬 정일래 송혜진 노재림 안정철 *곽정원 *신동호 *예성준 *에서 미 참여, 연구 활동 참 여 (8/3)	서김홍환성희남용재연훈권일우수 인신김# # # # 김이김(15/0)	김기동 유재권 우행 유명 (5/0)	이원규 박창종철 한 상 한 가 이 강 운 명 영 오 박 (10/0)

감사합니다.

KORIA (Korea Rare Isotope Accelerator) Leading World-Class Nuclear Science !!!

KoRIA 이용자 협의회 (국내, 구성중)

76 Ph.D.s and 43 students in 8 working groups

Principal Investigator	Y. (Hany	K. Kim ang Univ.)	B. G. Cheoun, B. H. Kang, M. S. Ryu, S. M. Kang, D. Y. Jang, B. H. Park, T. Schaarschmidt, S. K. Lee, J. S. Kang, K. H. Jo, B. K. Shin, S. H. Kim, I. S. Lee (4/10)						
Working Group	Nuclear Structure/ Nuclear Chemistry	Nuclear Astrophysics & Nucleosynthesis	Nuclear Matter	Nuclear Theory	Medical & Bio Application	RI Material Research	Nuclear Data for Atomic Power	Atom traps for RI research	
Leader (Institution)	S. H. Choi (Seoul National Univ.)	C. B. Moon (Hoseo Univ.)	C. H. Hyun (Daegu Univ.)	M. K. Cheoun (Soongsil Univ.)	W. Y. Park (Chungbuk National Univ.)	S. H. Park (KAERI)	Y.O. Lee (KAERI)	D. H. Yu (KRISS)	
Group member	W. Kim I. K. Yoo S. Stepanian Sato H. S. Lee #K. S. Lee #E. J. Ha M. Evgeniy H. S. Do J. K. Lee C. W. Son K. S. Oh K. E. Choi J. H. Song H. K. Kim J. S. Song (6+2/9)	I. S. Hahn J. H. Lee Y. K. Kwon J. Y. Moon C. C. Yun J. S. Yoo A. Kim E. H. Kim J. S. Park (8/2)	S. H. Lee H. C. Kim E. J. Kim J. K. Ahn Y. S. Oh K. S. Lee C. H. Lee H. J. Lee B. Hong *K. S. Lee H. J. Jeong, J. H. Jeong K. B. Kim, S. H. Kim J. Y. Park, J. H. Jeong S. Y. Yu, H. S. Jo S. J. Kim, K. H. Lee M. E. Baek, B. H. Choi E. A. Joo, K. Y. Baek J. H. Jang, S. H. Hwang H. H. Shim, J. K. Lee Y. M. Kim (11/19)	C. Ryu *E. J. Ha K. Kim B. G. Yu T. Choi W. Y. So (7/0)	Y. C. Ahn I. G. Kim K. C. Kim I. L. Jeong T. R. Kim U. Jung H. J. Song J. R. No J. C. Ahn *J. W. Gwak *D. H. Shin *S. J. Ye *Join research not project member (7+3/3)	J. K. Kim W. Hong B. Y. Han S. K. Ahn H. S. Shin N. Y. Kim B. J. Seo H. Im *Y. J. Rhee #J. M. Han #H. M. Park *K. H. Ko *G. Lim (15/0) * Joining 2 working groups	G. D. Kim J. G. Yoo HW. Choi H. J. Woo T. Y. Song H. I. Kim C. W. Lee #Y. J. Rhee #J. M. Han #H. M. Park #K. H. Ko #G. Lim (8+5/0)	Y. K. Lee C. Y. Park J. C. Moon T. Y. Kwon S. E. Park S. B. Lee H. S. Kang M. K. Oh Y. H. Park (10/0)	