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How to ?How to ?How to ?How to ?

−+→ µµ0
sB for new Physicsfor new Physicsfor new Physicsfor new Physics
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• Relative normalization search
– Measure the rate of Bs → µ+µ-decays relative to B →J/ψK+

– Apply same sample pre-selection criteria

– Uncertainties on Trigger and pre-selection efficiencies will cancel 

out in the ratios of the normalization

– B
s

→ µ+µ- sample is highly purified with Neural Network

event selection



How difficult ?How difficult ?How difficult ?How difficult ?

−+→ µµ0
sB for new Physicsfor new Physicsfor new Physicsfor new Physics

Need to discriminate signal from background

Need to retain decent signal

Reduce background by a factor of > 1000

Signal
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Signal

Final state fully reconstructed

Bs is long lived , B fragmentation is hard

Background 

Sequential semi-leptonic decay: b → cµ-X → µ+µ-X

Double semileptonic decay: bb → µ+µ-X

Continuum µ+µ- , µ + fake, fake+fake

Peaking Background in signal region (B����hh)
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Trigger

Data collected using dimuon trigger

• “CC”:
– 2 central muons 

“CMU”, |η|<0.6, 

– pT>1.5 GeV

– 2.7<Mµµ<6.0 GeV

– pT(µ)+ pT(µ) >4 GeV
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• “CF”:
– one central, one forward muon 

“CMX”, 0.6<|η|<1.0

– pT>2 GeV

– other cuts same as above

Trigger efficiency same for muons from J/ψ or Bs

(for muon of a given pT)



Improvements over previous Bs(B
0)→ µ+µ− result f

rom CDF

• Using twice the integrated luminosity (7 fb-1)

• Extended acceptance of events in the analysis by ~20%
– muon acceptance includes forward muons detected in CMX miniskirts 

– 12% from tracking acceptance increase (using previously excluded “CO
T spacer region”)

• Analysis improvements include an improved NN discriminant
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Central muons (CMU)

Forward muons (CMX) 

including “miniskirts”



“Blind” search region

• Search region: 5.169<Mµµ<5.469 GeV
– corresponds to ±6×σm, where σm≈24MeV (2-track invariant mass resolu

tion)

• Sideband regions: additional 0.5 GeV on either side
– Used to understand background

MC simulation of
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MC simulation of

Bs and B0→ µ+µ− 

mass peaks



Signal Optimization

• NN input variables

• 3D pointing angle

• Isolation

• Proper decay length 

• Proper decay length sig.

• PT(Bs)

• PT(µµµµ)

• Etc............

Multi-variable analysis : Neural Network

Unbiased optimization based on MC signal and 

data sidebands 

Output

Discriminating variables
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• Etc............
Output

(0 ~ 1)
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Signal Optimization

CC

• Systematic study has been done to optimize

NN event selection

• Excellent improvement achieved by using

14 discriminating variables!
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CF



- use distributions of sideband events 

with NN output >0.7 

- only events with Mµµ>5 GeV used to 

1) Combinatoric background

Signal 

region

Using our background dominated data sample, fit Mµµ

to a linear function.
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- only events with Mµµ>5 GeV used to 

suppress contributions from b → µµX

- slopes then fixed and normalization 

determined for each NN bin

- systematic uncertainty determined by 

studying effects of various fit functions 

and fit ranges
• between 10-50%

Signal 

region



Two-body B→ hh decays where h produces a fake 

muon can contribute to the background

• fake muons dominated by π+, π-,K+, K-

• fake rates are determined separately using D*-tagged      D → K-π+ events

Estimate contribution to signal region by:

2) Background from two-body hadronic B decays
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Estimate contribution to signal region by:

• take acceptance, Mhh, pT(h) from MC samples. Normalizations derived from 

known branching fractions

• convolute pT(h) with pT and luminosity-dependent µ-fake rates. Double fake 

rate ~0.04%



Example of D0

peaks in one bin of 

pT, used to extract a 

pT and luminosity-

dependent fake rate 

Fake rates from D*-tagged D0 → K-π+ events

K- K+
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for K+ and K-

Kaons passing muon selection:

K-
K+



Muon fake rates

• Variations with pT and 

luminosity are taken into 

account

• Total systematic 

uncertainty (due to both 

14

uncertainty (due to both 

muon legs) dominated by 

residual run-dependence: 

~35%
Fake rate for

forward muons

(central muons

in backup):



Expected limits

BR(Bs�µ+µ-) < 1.5×10−8 @ 95%CL

BR(B0�µ+µ-) < 4.6×10−9 @ 95%CL

Significant improvement in sensitivity 

over all previous analyses
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2.0 fb-1 : 4.9×10-8 5.8×10-8

3.7 fb-1 : 3.4×10-8 4.4×10-8

7 fb-1     : 1.5×10-8

Expected   Observed

For BR(Bs�µ+µ-):



Opening “the box”
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Bs→ µ+µ− search: opening the box

Highest 

17

zoom

Highest 

sensitivity 

NN bin



CC only
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CF only
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Focus on B0 signal window first
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B0 signal window, comparison of observation and 

background prediction

CC, CF

combined

Dark hatched 

band shows 

uncertainty 

on the mean 
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Data and background expectation are in good agreement

on the mean 

background 

prediction



B0 signal window, comparison of observation and 

background prediction

CC only
3 highest NN bins
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CF only



B0 signal window, comparison of observation and 

background prediction

3 most sensitive NN bins only

CC only
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CF only

CF only

Data and background expectation are in good agreement



We set a limit (using CLs method) of 

at 95% C.L. 

- world’s best limit

B0→ µ+µ− search, observed limit

BR(B0 → µ+µ−) < 6.0 ×10−9
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- consistent with the expected limit 

BR(B0→ µ+µ−)< 4.6×10− 9

Compare to the SM BR calculation of

BR(B0 → µ+µ−) = (1.0 ± 0.1) ×10−10



Data in Bs signal window
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Bs signal window, comparison of observation and 

background prediction

Shown is the total expected background and total uncertainty, as well as number of 

observed events
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Observe an excess, concentrated in the 3 highest NN bins

of the CC sample, over background expectation



Using the CLs method, we observe 

BR(Bs→ µ+µ−)< 4.0×10− 8

at 95% C.L. 

• Compare to the expected limit BR(B0→ 

µ+µ−)< 1.5×10− 8

Bs→ µ+µ− search, observed limit
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µ µ )< 1.5×10

• outside the 2σ consistency band

Need statistical interpretation of the observed excess: 

• what is the level of inconsistency with the background?

• what does a fit to the data in the Bs search window yield?



Using the log-likelihood fit, we set the first two-sided limit of Bs→ µ+µ− decay

Our central value is

4.6 ×10−9 < BR(Bs → µ+µ−) < 3.9 ×10−8

BR(B → µ+µ−) =1.8+1.1 ×10−8

Fit to the data in the Bs search window

@90% C.L.
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at 90% C.L.

BR(Bs → µ+µ−) =1.8−0.9

+1.1 ×10−8

Compare to SM calculation of 

BR(Bs → µ+µ−) = (3.2 ± 0.2) ×10−9



Consistency with the SM prediction 

of Bs→µ+µ− decays

reminder: SM prediction: BR(Bs→ µ+µ−)=(3.2±0.2)×10-9

A. J. Buras et al., JHEP 1010:009,2010

If we include the SM BR(Bs→ µ+µ−) in

the background hypothesis, we 

“Background” hypothesis

now includes the SM 

expectation of BR(Bs→µµ)
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observe a p-value of 1.9%

taking into account the small theoretical

uncertainty on the SM prediction by 

assuming +1σ: p-value: 2.1%



We see an excess over the background-only expectation in the Bs signal region and 

have set the first two-sided bounds on BR(Bs→ µ+µ−)

A fit to the data, including all uncertainties, yields

Conclusions

4.6 ×10−9 < BR(Bs → µ+µ−) < 3.9×10−8

at 90% C.L.
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Data in the B0 search window are consistent with background expectation, and the 

world’s best limit is extracted:.

BR(Bs → µ+µ−) =1.8−0.9

+1.1 ×10−8

BR(B0 → µ+µ−) < 6.0(5.0) ×10−9at95%(90%)C.L.



Fermilab-Today July-15th

Results submitted to PRL
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Results submitted to PRL



What we will see

beyond our horizon ?
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Results opened at

EPS 2011

Stay tuned !



SM Diagrams

Penguin DiagramBox Diagram
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SM Expectation 

−+→ µµ0
sBRare decay                           : FCNCs,  forbidden at tree level

−+→ µµ0
sB

JHEP 1009 (2010)106
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Penguin Diagram

2HDM

Penguin Diagram

NP Expectation 

Br enhancement

Powerful Probe to New Physics



• “Smoking gun” of some Flavor Violating 
NP models:

– ratio BR(Bs→ µ+µ−)/ BR(B0→ µ+µ−)  highly inform
ative about whether NP violates flavor significantly 
or not 

– clear correlation between CP violating mixing pha
se from Bs→ J/ψφ and BR(Bs→ µ+µ−) 

Altmannshofer, Buras, Gori, Paradisi, Straub, 

Probing New Physics  
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• Important complementarity with direct se
arches at Tevatron and LHC
– Indirect searches can access even higher mass s

cales than LHC COM energies

New bounds on BR(B0→ µ+µ−) and BR(Bs→ µ+µ−) are of crucial importance, and are a 

top priority at the Tevatron and LHC.

Altmannshofer, Buras, Gori, Paradisi, Straub, 

Nucl.Phys.B830:17-94,2010



Plenary talk

A.Buras, Beauty 2011:

Probing New Physics  
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� A powerful indirect search to probe cosmol

ogically consistent SUSY at large tanb. e.g., 

• Arnowitt et al., PLB 538 (2002) 121 for 

mSUGRA; 

• S. Baek, Y.G. Kim, and P. Ko, JHEP 0502, 

067 (2005) for non-universal Higgs sce

nario.

� 3 PRLs (2004, 2005, 2008) 

Producing the best limits on SUSY

Bs → µµ at CDF 

nario.

� 3 PRLs (2004, 2005, 2008) 

� Producing the best limits on SUSY

� Goal: 2 x 10-8  with 6.9 fb-1 and 

two challenging updated methods :



B+→ J/ψΚ → µ+µ−Κ, 

~30k candidates.

In addition to baseline cuts, B+

sample passes 

- J/ψ mass constraint for   

dimuons

Pre-selection: B+ normalization sample
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dimuons

- K quality cuts, and  

K and J/ψ constrained to    

common vertex



Bs(B
0) search sample, 

~100k candidates

Pre-selection: Bs(B
0) search samples
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New Neural Network

Neural Network Input Variables
3D proper decay length 

Isolation 

Pointing angle (∆α∆α∆α∆α3d) 

Lower |pT(µµµµ)| 

3D proper decay length significance

� New 14 variable NN to increase S/B

� Carefully chose input variables to avoid bias for di-muon mass shape

∑∑∑∑++++
====

i

i

TT

T

pp

p
I

µµµµµµµµ

µµµµµµµµ
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3D proper decay length significance

Larger |d0(µµµµ)| 

Smaller |d0(µµµµ)| 

Smaller |d0(µµµµ)| significance 

Larger |d0(µµµµ)| significance 

Vertex Fitting χχχχ2 

Decay length (L3d) 

2D pointing angle (∆α∆α∆α∆α2d) 

Lxy significance 

|d0(Bs)|

λλλλ

λλλλ,,, 30 dxy LLd

Impact parameter



Bs(B
0) Signal vs. Background
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Signal sequential
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From B. Casey, ICHEP2010
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Bias Check from NN event selection

Mass Bias Check with Sideband region
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NO correlation b/w

NN and Mass



Data in Bs signal window
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Ensemble of background-only pseudo-experiments is used to determine a p-value for a 

given hypothesis

Determination of the p-value

Log Likelihood Distribution 

of pseudo-experiments

for background-only hypothesis

for B0→ µ+µ− signal window

• for each pseudo-experiment, we do two fits 

and form the log-likelihood ratio

• in the denominator, the “signal” is fixed to 

zero (I.e. we assume background only), and 

2ln(Q) Q =
L(s+ b | data)

L(b | data)
with
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zero (I.e. we assume background only), and 

in the numerator s floats

• L(h|x) is the product of Poisson 
probabilities over all NN and mass bins

• systematic uncertainties included as 

nuisance parameters, modeled as Gaussian.

Result: the p-value for the     

background-only hypothesis is 23.3%



P value for background-only hypothesis

Observed p-value: 0.27%. 

This corresponds to a 2.8σdiscrepancy 

with a background-only null hypothesis 

(one-sided gaussian)

Log Likelihood Distribution 

of pseudo-experiments

for background hypothesis

data
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data



Cross Checks
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Cross checks of the total background prediction

Apply background model to statistically independent control samples and compare 

result with observation. We have investigated 2 groups of samples:

1) Control samples composed mainly of combinatorial backgrounds 

• OS-: µ+µ− events with negative proper decay length

• SS+: loose pre-selection* and same sign muon pairs

• SS-: like SS+ but negative proper decay length 

2) Control sample with significant contribution from B->hh background

• FM+: loose pre-selection and at least one muon fails
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• FM+: loose pre-selection and at least one muon fails

quality requirements

* Loose pre-selection = pT(µ)>1.5 and pT(µµ)> 4 GeV



The FM+ control sample has 

at least one muon which fails 

our muon quality requirements

�need a different set of 

K/π fake rates since the 

muon ID requirements 

are different than used in 

the signal sample. Same 

method as before is used 

Aside: The FM+ control sample
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method as before is used 

Fake rate for

central muons

(FM+ selection)



Result of background checks in control samples
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Shown are total number of events in all NN bins. 

• “Prob(N>=Nobs)” is the Poisson probability for making an observation at 

least as large given the predicted background

� Good agreement across all control samples.



Fit to the data: cross checks

Use Bayesian binned likelihood

technique

• assumes a flat prior for BR>0

• integrates over all sources of 

systematic uncertainty 

assuming gaussian priors
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• best fit value taken at maximum,

uncertainty taken as shortest

interval containing 68% of the 

integral.

Best fit to the data yields almost identical results as before

BR(Bs → µ+µ−) =1.8−0.9

+1.1 ×10−8



• excess observed in CC

muons 

• in most sensitive NN 

bin: data looks signal-like

• see a fluctuation in 

0.97<NN<0.987-

A closer look at the data

Bs signal window, CC and CF separate

Showing only the most sensitive 4 highest NN 

bins
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0.97<NN<0.987-

little signal sensitivity 

in this bin.

Does the fluctuation in this bin drive the result? 

Check how the answer changes if we only look at the two highest NN bins..



• Background-only hypothesis:

Observed p-value: 0.66%

(compare to 0.27%)

• Background + SM hypothesis:

Fit to the data, 

only considering the 2 highest NN bins
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• Background + SM hypothesis:

Observed p-value: 4.1%

(compare to 1.9%)

• Conclusion: “fluctuation” in the 

lower sensitivity bin adds to the 

observed discrepancy, but is not 

the driving contribution. 

data



Residual B → hh background

The number of residual B → hh events are very small. E.g. for the highest NN bins: 

Factor 10 higher contribution in B0 signal window because          B → hh peaks closer 

to the B0 mass

CC CF

Bs signal window 0.08±0.2 0.03±0.01

B0 signal window 0.72±0.2 0.2±0.05
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to the B0 mass

• and we see no excess over the prediction in the B0 signal window

We carefully checked our 

predictions in a control region 

enhanced in B → hh decays 

(FM+ sample, at least one 

“muon” has to fail our muon 

selection)

Predicted total events observed Prob.(%)



In our highest NN bin we clearly 

select B → hh and can predict it 

accurately with our background 

Observation in FM+ sample,

highest NN bins
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accurately with our background 

estimate method.



Summary- Cross checks

We have performed cross checks (some shown in the backup slides) to confirm that

�The results are stable w.r.t. variations in error shape assumptions

• have compared poisson to gaussian statistics for shapes of systematic 

uncertainties 

�The results are independent of the statistical treatment

• we get the same answers using Bayesian and Likelihood fit 
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• we get the same answers using Bayesian and Likelihood fit 

�The results are not driven by a fluctuation that is observed in the 3rd 

highest NN bin

• somewhat smaller significance when the 3rd highest NN bin is excluded

�The excess is not from B→hh

• 0.08 residual events, carefully checked modeling


