The ILC Experiment and Development of the Finely Segmented Calorimeter

Satoru Uozumi (KNU) May-24th 2010 KISTI seminar

Outline

- The linear collider project and its prospects
- Highlights of physics outcomes
- Detector development in KNU collider lab.

Why ILC?

 e^+

e

With hadron colliders ...

- Relatively easy to increase center-of-mass energy
- Not all the energy can be used for collision
- Large backgrounds

With lepton colliders ...

 $\sim \sim \sim$

• Collision of elementary particles. • Good for precise measurement. • Difficult to increase center-ofmass energy due to synchrotron radiation. $\delta E \sim \frac{E^4}{Rm^4}$ • Linear accelerator !

Discovery of new physics at LHC Precise measurement at ILC

ILC configuration (500 GeV_{CM})

Not to scale

Current baseline (RDR - http://www.linearcollider.org/)

Higgs event example

ILC Parameters

(http://www.fnal.gov/directorate/icfa/LC_parameters.pdf)

• 1st phase

- Energy 200→500 GeV CM, scannable
- 500 fb⁻¹in first 4 years of physics run
- Polarized e- (>80%)

• 2nd phase

- Energy upgrade to ~1TeV
- 1000 fb⁻¹ in 3-4 years
- Options depending on physics landscape
 - More on 500 GeV CM in 2~3 years
 - $\gamma \gamma$, γe^- , e^-e^- , Giga-Z, WW, polarized e+

To start commissioning ~ 2020

Beam Parameters (500 GeV_{CM})

- 5 trains/s, 1 train = 2820 bunches in 1 ms
- #particles/bunch = 2x10¹⁰
- $\sigma_x = 550 \text{ nm}, \sigma_y = 6 \text{ nm}, \sigma_z = 300 \mu \text{m}$
- Luminosity = 2×10^{34} /cm²s

	Nominal	Try to accomodate
#bunch/train	2820	5640
Bunch spacing (ns)	308	154
Bunch length (µm)	300	150

Proposed detector concepts

ILD

Formed in 2007 (Asia & Europe & U.S.)

SiD (mainly U.S.)

1 collision point with 2 detectors (push-pull)

- Can save one entire beamline a large cost saving
 - But will it work?
 - Moving 10000 ton detector in a few days.
 - Historical/political issues, detector design, accelerator design, integration/engineering design, alignment/calibration, etc.
- Intensive studies under way

Project timeline

Accelerator Comissioning ~ 2020

Physics highlights

Physics @ ILC

1st stage : Ecm=500GeV (91.2GeV, 200-500GeV changeable) Luminosity = > 500 / fb / several years 2nd stage : Ecm=1TeV

Higgs Production @ ILC

• Diagrams of the Higgs production

- Works as the Higgs Factory!
- Use all modes: 3σ sensitivity in 1 day (1 year at LHC)

Higgs signal @ ILC

• 2lepton + X mode

- Identify lepton pair whose invariant mass is consistent with the Z mass.
- Recoil mass

$$M_{h}^{2} = (p_{init} - p_{ll})^{2}$$

 Model independent, Higgs decay mode independent No bias.

Higgs couplings @ ILC

Deviations from SM

(By S. Yamashita)

SUSY (2 Higgs Doulet Model)

Extra dimension (Higgs-radion mixing)

Measurement of Higgs parameters

$e^+e^- \rightarrow Zh, Z \rightarrow \mu\mu, ee$

- Higgs mass $\sigma(m_h) = 40 \text{ MeV}$
- Higgs spin, parity
 - Threshold scan
 - Higgs decay distribution
 - Zh angular dist.
 - ~ sin² θ if J=0+

SUSY Study @ ILC

- LHC would discover SUSY or missing-energy phenomena.
- SUSY Study @ ILC
 Precise measurements of the sparticle properties can be done.
 Beam polarization useful.

It can also reduce backgrounds

ILC + LHC
 Determine underlying SUSY
 model and SUSY breaking
 mechanism.

Smuon detection

- Signal : $\mu^+\mu^-$ and nothing. Plot acoplanarity of $\mu^+\mu^-$ -beam
- Polarized e⁻ (R) can reduce W⁺ W⁻ background.

Masses of smuon and LSP $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^-, \ \tilde{\mu}_R \rightarrow \mu \tilde{\chi}_1^0$

- Total 4-momentum of smuon pair is known
- Use the endpoints of μ^{\pm} for simultaneous determination of $m(\tilde{\mu}_R)$ and $m(\tilde{\chi}_1^0)$

Responding to LHC

Systematic studies needed

- When are we likely to know what from LHC? Possible LHC discovery scenarios
- For each scenario

What physics modes to study at ILC
What exact kind of machine to build
What exact kind of detector to build
Priorities and timescale, upgrade paths

• Cost and political realities to be included

Detector development

Particle Flow Algorithm Development of Finely granular calorimeter

ILC Detector concepts

	ILD	SiD	4th	
Tracker	TPC + Si-strip	Si-strip	TPC or Si-strip or DC	
Calorimetry	PFA	PFA	compensating	
В	3.5 T	5 T	3.5 T	
ECAL Rin	1.84 m	1.27 m	1.5 m	
Rout	6.27 m	6.45 m	5.5 m	
Zout	6.15 m	6.45 m	6.4 m	

Jet Energy Measurement at ILC

• $e^+e^- \rightarrow H, W, Z, tt, SUSY, etc ...$

 \rightarrow many quark jets

• Precise jet energy measurement is the key at the ILC.

Particle Flow Algorithm ... a new method

Constituents of quark jets :

- Charged particles : 65 % ... momenta can be precisely measured by tracker
- Neutral particles (Photons ... 25 %, neutral hadrons ... 10 %)
 ... energies have to be measured by calorimeter

- Separation of jet particles in the calorimeter is required for the PFA
- → Fine granular calorimeter is necessary.

Calorimeter for the PFA

Separation of jet particles in calorimeter is crucial for the PFA.

"Figure of Merit for the PFA"

B : Magnetic field
R : CAL inner radius
σ: CAL segmentation size
R_M : Effective Moliere radius

For the PFA, finely segmented, large, dense calorimeter is required.

Jet-energy reconstruction by PFA (example)

The ILD Detector

- Vertex
 - 5 or 6 layers
 - Technology open
- Si-trackers
 - 2 barrel + 7 forward disks
 - Outer and end of TPC
- TPC
 - GEM or MicroMEGAS (or Si pixel)
- ECAL
 - Scint-strip or Silicon + Tungsten
- HCAL
 - Scint-tile (or Digital HCAL)

The Scintillator-Strip Electromagnetic Calorimeter

- Sampling calorimeter with Tungstenscintillator sandwich structure.
- Scintillator-strip technology adopted to achieve fine granularity.
- Lateral Segmentation : 1 ~ 0.5 cm
- Huge Number of channels (~10M channels).
- Need to establish sufficient performance while keeping the low production cost.
- First need to establish the feasibility!

R&D of Elementary Components

New-type photo-sensor (MPPC)

4.5 x 1 x 0.2 cm

Plastic scintillator strip by extrusion technique

Shifting Fiber

(Y11 1mmφ)

mm

Recent Breakthrough – Novel Semiconductor Photo-sensor,

the Multi-Pixel Photon Counter

- Consists of Geiger-mode APD pixel matrix (100-3100 pixels).
- It has many great features which supersedes the photomultipliers.
 - High Gain (10⁵~10⁶)
 - Compact (package size ~ a few mm)
 - Low Cost
 - Insensitive to magnetic field
 - Dark noise exists (~100 kHz)
 - Input vs output is non-linear

Ideal for the Scintillator-strip calorimeter.
Development has started since 5 years ago, and being underway.

Extruded Scintillator Production

Calorimeter Prototypes

1st prototype (2007 Spring):

- Test feasibility of the sci-strip calorimeter
- Tested with 1-6 GeV positron beams @ DESY

2nd prototype (2008 fall):

- Establish the Sci-strip calorimeter technology
- Tested with 1-32 GeV e⁻, π⁻, μ⁻, p beams @ Fermilab

- 2160 channels total
- Realistic structure (including temp/gain monitoring system)

Beam Tests

First prototype test @ DESY in May 2007

Scintillator-strip test @ KEK in Nov 2007

2nd prototype test @ Fermilab in Sep 2008

The scintillator-strip calorimeter technology has been Established by the series of beam tests!

Performance of the calorimeter prototype

10 mm to 5 mm width strip

Further step :

- For precise measurement of jets with E > 100 GeV,
 5 mm segmentation will be desirable.
- It can be still possible with 5 mm width scintillator strips.
- First measurement the 5mm scintillator strip shows encouraging result.

Light yield of 45 x 5 x 2 mm strip

Summary

- The Linear Collider is the next-generation collider experiment after the LHC.
- The ILC reveals clear shape of the Higgs and new physics with its excellent precision measurement ability.
- Development of the scintillator-strip EM calorimeter (ScECAL) is extensively ongoing in KNU with world-wide collaboration.
- Test of the calorimeter prototype proves promising performance of the ScECAL.
- Participation of more Korean colleagues are strongly awaited in many fields ! (Accelerator, physics, detector...)

Backups

π^0 reconstruction

- Ability of π^0 reconstruction from 2γ might be useful to improve jet energy resolution.
- Generate π^0 by putting iron on beamline and injecting 16-32 GeV π^- beam.
- Try reconstruction of the generated π^0 with Scintillator-ECAL.

Special feature of the finely segmented calorimeter

Sources

• e- sources

- Conventional (i.e. photocathode + laser)
- e+ sources
 - Baseline: 150 GeV e- \rightarrow 100m-long undulator \rightarrow
 - photon on target \rightarrow e+
 - Auxiliary 'keep alive' e+ source at ~1/10 intensity

Dumping Rings

- Dumping Rings for e+ and e- located centrally around IP
 - Housed in a single tunnel (~6 km circum.)
 - 5 GeV, entire train is stored compressed
 - \rightarrow fast injection/ extraction kicker
 - $\gamma \epsilon_v$ reduced to 2 10⁻⁸ m in 200 ms

ATF@KEK (Accelerator Test Facility) achieved $\gamma \varepsilon_y = 2 \ 10^{-8} \text{ m}$

 \rightarrow ATF2 project Truly an international effort

Linac Tunnels

Follows the earth curvature - e.g. liq He system (Beam delivery system is in a plane)

Have a service tunnel - maintenance/repair during running

Main Linacs

- Accelerating unit
 - One 10 MW krystron serving 3 cryomodules with 8 or 9 superconducting cavities each
 - Accelerating gradient : 31.5 MV/m (35 MV/m max)
 - Default cavity design: 'Tesla design'
 - Achieved ~35 MV/m for a number of multi-cell cavities
 - Alternatives: Improved types are under study
 - Cornell re-entrant type, DESY/KEK low-loss type.

Low-loss multi-cell cavity

Main Linac: SRF Cavity Gradient

	Cavity type	Qualified gradient	Operational gradient	Length*	energy
		MV/m	MV/m	Km	GeV
initial	TESLA	35	31.5	10.6	250
upgrade	LL	40	36.0	+9.3	500

Total length of one 500 GeV linac \approx 20km

* assuming 75% fill factor

Improved Processing Electropolishing

KEK / Nomura EP

DESY EP

Chemical Polish

Electro Polish

SUSY Particles @ ILC

• ILC can pair-create SUSY particles

$$e^+e^-
ightarrow ilde{\mu}_R^+ ilde{\mu}_R^-, \ ilde{\mu}_R
ightarrow \mu ilde{\chi}_1^0$$

etc. $e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^-, \ ilde{\chi}_1^+
ightarrow W^+ ilde{\chi}_1^0$

- Precision measurements of masses and mixings
- Determination of spin, hypercharge etc.
- Beam polarization useful. It can also reduce backgrounds

CAlorimeter for the Linear Collider Experiment

330 physicists/engineers from 57 institutes and 17 countries coming from 4 continents

Main Task : Develop fine granular calorimeter for Particle Flow Algorithm at the ILC experiment.

Electromagnetic CAL:

Scintillator-Tungsten

(Kobe / Shinshu / Tsukuba / Niigata / Tokyo / Kyungpook universities)

- Silicon-Tungsten
- Digital SiW ECAL (MAPS)

Hadron CAL:

• Analog (Scintillator) HCAL

•Digital HCAL

Calorimetry of high energy particles

- High energy particles cause cascade shower inside the calorimeter
 - Electromagnetic shower
 - Hadron shower
- Num. of particles in the shower
 - ~ proportional to energy of original particle
- Count num. of particles by active material in the calorimeter (sampling calorimeter)

Gain monitoring by LED and notched fiber

- Nice pedestal-1pe peak separation has been observed on ~70% of all channels.
- For other channels, electrical noise on readout board was too large to perform the gain measurement.
 Investigation is underway.

500

500

1000

1000