# A Search for an exotic light particle at Belle experiment

October 15<sup>th</sup>, 2010 Seminar @ KISTI

HyoJung Hyun Kyungpook National University

# Contents

#### Motivation

- Astro-particle observations (ATIC and PAMELA)
- HyperCP exotic events
- KEK-B factory and Belle detector
- Search for an exotic light particle at Belle
  - Signal MC study
  - Background MC study
  - Systematic uncertainty
  - Results
  - Light particle search
- Summary and Conclusion

#### Astro-particle Observations : ATIC exp.

Chang et al., (ATIC collaboration), Nature **456**, 362 (2008)



# The electron differential energy spectrum (scaled by $E^3$ ):

Red filled circles: ATICGreen stars: AMSOpen black triangles: HEATOpen blue circles: BETSBlue crosses: PPB-BETSBlack open diamonds : emulsion chambers



- ATIC results showing agreement with previous data at lower energy and with the PPB-BETS at higher energy
- ATIC observes an 'enhancement' in the electron intensity over the GALPROP (interstellar propagation code) curve.

Seminar @ KISTI

hjhyun@knu.ac.kr

#### Astro-particle Observations : PAMELA exp.



O. Adriani et al., (PAMELA collaboration), Nature 458, 607 (2009)



Positron fraction with other experimental data and with secondary production model.

hjhyun@knu.ac.kr

#### **Astro-particle Observations**

- ATIC : excess in  $e^+ + e^-$  spectrum between 300 GeV and 800 GeV.
- PAMELA : excess in e<sup>+</sup> spectrum from 10 GeV to 100 GeV.

No excess in proton and anti-proton spectrum

Dark matter annihilation mediated by a extra gauge boson (U-boson), mass < ~1 GeV.</li>
 U-boson → e<sup>+</sup> e<sup>-</sup>, μ<sup>+</sup> μ<sup>-</sup>



## HyperCP exotic event

H.K.Park et al. (HyperCP Collaboration), PRL 94, 021801 (2005)



- Observation of 3 events for  $\Sigma^+ \rightarrow p \ \mu^+ \mu^-$  decays
- Mass of X<sup>o</sup>(214): (214.3 ± 0.5) MeV/c<sup>2</sup>
- Possible interpretations
  - Pseudoscalar Sgoldstino D.S.Gorbunov and V.A.Rubakov, PRD 73, 035002 (2006)
  - Light Pseudoscalar Higgs Boson X.-G.He, J.Tandean and G.Valencia, PRL 98, 081802 (2007)
  - Vector U-boson M. Reece and L.-T. Wang JHEP 0907, 51 (2009),
     M. Pospelov, arXiv:0811.1030 [hep-ph], C.-H. Chen, C.-Q. Geng and C.-W. Kao, Phys. Lett. B 663, 100 (2008).

hjhyun@knu.ac.kr

## Possible Decay Modes for Search at B-Factory

- Possible decay modes to search for sgoldstinos in SUSY models
  - Pseudoscalar B and D meson decays to pseudoscalar meson and X<sup>o</sup>
    - $D \rightarrow \pi \pi X^{\circ}, X^{\circ} \rightarrow \mu^{+}\mu^{-}, \gamma \gamma$
    - $B \rightarrow K \pi X^{\circ}, X^{\circ} \rightarrow \mu^{+}\mu^{-}, \gamma\gamma$
  - Pseudoscalar B and D meson decays to vector meson and X<sup>o</sup> S.V.Demidov and D.S.Gorbunov, JETP Letters, 2006, vol. 84, No. 9, pp479-484
    - B(D  $\rightarrow \rho X^{\circ}, X^{\circ} \rightarrow \mu^{+}\mu^{-}) = 10^{-9} \sim 10^{-6}$
    - B(B  $\rightarrow$  K\*° X°, X°  $\rightarrow$   $\mu^+\mu^-$ ) = 10<sup>-9</sup> ~ 10<sup>-6</sup>
    - $B(B \rightarrow \rho^{\circ} X^{\circ}, X^{\circ} \rightarrow \mu^{+}\mu^{-}) = 10^{-9} \sim 10^{-7}$
- The channels listed above are possible for a low mass Higgs in NMSSM (Next-to-Minimal SUSY SM)

• In this talk, we will show results on B  $\rightarrow$  K\*° X°, X°  $\rightarrow \mu^+\mu^$ and B  $\rightarrow \rho^\circ$  X°, X°  $\rightarrow \mu^+\mu^-$ 

#### **Expected B.F. as Pseudoscalar Sgoldstino**

Branching ratios of decays  $P_{B,D} \longrightarrow VP(P \longrightarrow \mu^+\mu^-)$  in the models I, II, and III. Branching ratios of decays  $P_{B,D} \longrightarrow VP(P \longrightarrow \gamma\gamma)$  are given by the same numbers multiplied by  $\Gamma(P \longrightarrow \gamma\gamma)/\Gamma(P \longrightarrow \mu^+\mu^-)$ 

| Decay                                                           | $h_{jl}$       | $A_0^{(P_{B,D}, V)}$ | Br <sub>(model I)</sub> | Br <sub>(model II)</sub> | Br <sub>(model III)</sub> |
|-----------------------------------------------------------------|----------------|----------------------|-------------------------|--------------------------|---------------------------|
| $B_s \longrightarrow \phi P(P \longrightarrow \mu^+\mu^-)$      | $h_{23}^{(D)}$ | 0.42 [18]            | $6.5 	imes 10^{-9}$     | $8.8\times10^{-6}$       | $8.7\times10^{-6}$        |
| $B_s \longrightarrow K^{*0} P(P \longrightarrow \mu^+ \mu^-)$   | $h_{13}^{(D)}$ | 0.37 [18]            | $5.3 	imes 10^{-9}$     | $7.2\times10^{-6}$       | $2.3 	imes 10^{-7}$       |
| $B_c^+ \longrightarrow D^{*+}P(P \longrightarrow \mu^+\mu^-)$   | $h_{13}^{(D)}$ | 0.14 [19]            | $3.2\times10^{-10}$     | $4.4 	imes 10^{-7}$      | $1.4 	imes 10^{-8}$       |
| $B_c^+ \longrightarrow D_s^{*+}P(P \longrightarrow \mu^+\mu^-)$ | $h_{23}^{(D)}$ | 0.14ª                | $3.0	imes10^{-10}$      | $4.0 	imes 10^{-7}$      | $4.0\times10^{-7}$        |
| $B_c^+ \longrightarrow B^{*+}P(P \longrightarrow \mu^+\mu^-)$   | $h_{12}^{(U)}$ | 0.23 [20]            | $4.1 	imes 10^{-10}$    | $4.4 	imes 10^{-8}$      | $8.2 	imes 10^{-7}$       |
| $B^+ \longrightarrow K^{* +} P(P \longrightarrow \mu^+ \mu^-)$  | $h_{23}^{(D)}$ | 0.31 [17]            | $3.8 	imes 10^{-9}$     | $5.2\times10^{-6}$       | $5.1 \times 10^{-6}$      |
| $B^0 \longrightarrow K^{*0} P(P \longrightarrow \mu^+ \mu^-)$   |                |                      | $3.5 	imes 10^{-9}$     | $4.8 	imes 10^{-6}$      | $4.7 \times 10^{-6}$      |
| $B^0 \longrightarrow \rho P(P \longrightarrow \mu^+\mu^-)$      | $h_{13}^{(D)}$ | 0.28 [17]            | $3.1 \times 10^{-9}$    | $4.2 \times 10^{-6}$     | $1.4 	imes 10^{-7}$       |
| $B^+ \longrightarrow \rho^+ P(P \longrightarrow \mu^+ \mu^-)$   |                |                      | $3.3 	imes 10^{-9}$     | $4.6 	imes 10^{-6}$      | $1.3 \times 10^{-7}$      |
| $D^0 \longrightarrow \rho P(P \longrightarrow \mu^+\mu^-)$      | $h_{12}^{(U)}$ | 0.64 [17]            | $1.4 	imes 10^{-9}$     | $1.5 	imes 10^{-7}$      | $2.8 	imes 10^{-6}$       |
| $D^+ \longrightarrow \rho^+ P(P \longrightarrow \mu^+ \mu^-)$   |                |                      | $3.5 	imes 10^{-9}$     | $3.7	imes10^{-7}$        | $7.0 	imes 10^{-6}$       |

<sup>a</sup> We did not find any estimate of this form factor in literature and use this value as an order-of-magnitude estimate, which is sufficient for our study.

S.V.Demidov and D.S.Gorbunov, JETP Letters, 2006, vol. 84, No. 9, pp479-484

Seminar @ KISTI

hjhyun@knu.ac.kr

#### **B-Factory at KEK**



KEKB:

Asymmetric e<sup>+</sup>e<sup>-</sup> collider

- Two separate rings
  - e<sup>+</sup> (LER): 3.5 GeV
  - e<sup>-</sup> (HER): 8.0 GeV

(3.1 GeV/9 GeV for PEPII)

- CM energy : 10.58 GeV at  $\Upsilon(4S)$  $\Upsilon(4S) \rightarrow$  BB-bar
- ±11 mrad finite crossing angle at IP
- Operation since June, 1999
- $L_{peak} = 2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Accumulated total integrated L
   ~ 1000 fb<sup>-1</sup>

#### New World Record Luminosity

hyun@knu.ac.kr

#### **Belle Detector**

Silica-aerogel **Cherenkov Counters ;** Superconducting n = 1.015 ~ 1.030 Solenoid Magnet; 1.5T 3.5GeV e+ **Electromagnetic Calorimeter**; **CsI(TI)** 16X<sub>0</sub> **Time-of-Flight Counters** 8GeV e-**Central Drift Chamber ;** Tracking + dE/dx small cell +  $He/C_2H_6$ **Extreme Forward-and-Backward Calorimeters ;** BGO Muon and K<sup>0</sup> Meson Detector ; Silicon Vertex Detector; 14/15 lyr. RPC+Fe 4 layers silicon strip sensor

#### **Decay modes and Event selection**

 $B^{\circ} \rightarrow K^{*\circ}X^{\circ}, K^{*\circ} \rightarrow K^{+}\pi, X^{\circ}(214) \rightarrow \mu^{+}\mu$  $B^{\circ} \rightarrow \rho^{\circ}X^{\circ}, \rho^{\circ} \rightarrow \pi^{+}\pi, X^{\circ}(214) \rightarrow \mu^{+}\mu$ 

- Large sample of  $Y(4S) \rightarrow BB$ -bar : 657M BB-bar pairs
- X°(214) as a scalar particle (spin 0) or a vector particle (spin 1)
- Fully longitudinally polarized for a vector particle X°(214)
- Invariant masses of K\*° and  $\rho^{\circ}$ : within ±1.5 $\sigma$  and ±1 $\sigma$  from a central value, respectively
- Kinematic variables,  $\Delta E$  and  $M_{bc}$

• 
$$\Delta E = E_B^* - E_{beam}^*$$

• 
$$(M_{bc})^2 = (E_{beam}^*)^2 - |p_B^*|^2$$
  
 $E_{beam}^*$ : beam energy,  
 $p_B^*$  and  $E_B^*$ : momentum and energy of B candidate



Seminar @ KISTI

hjhyun@knu.ac.kr

### **Signal efficiency**

| Decay modes                                   | $B_0 \rightarrow$ | K*0X0    | $B^0 \rightarrow \rho^0 X^0$ |          |  |
|-----------------------------------------------|-------------------|----------|------------------------------|----------|--|
|                                               | scalar            | vector   | scalar                       | vector   |  |
| muon mass resolution<br>[keV/c <sup>2</sup> ] | 427 ± 14          | 425 ± 14 | 428 ± 15                     | 425 ± 15 |  |
| signal efficiency (ε <sub>cor</sub> )         | 23.5%             | 23.5%    | 20.5%                        | 20.5%    |  |

 X<sup>o</sup> search window is defined in terms of the dimuon mass resolution

> 214.3 ± 3 × [0.5 (HyperCP) + resol. (Belle)] MeV/c<sup>2</sup> 211.6 MeV/c<sup>2</sup> <  $M_{\mu+\mu}$  < 217.2 MeV/c<sup>2</sup>

# **Background Study**

- Fitting method
  - Use MC samples of continuum and BB-bar, which are about 3 times larger than data sample
  - Fit MC data with threshold function at sideband region
    - sideband is defined as  $5\sigma \sim 10\sigma$  in  $\Delta E-M_{bc}$ : 0.06 GeV <  $|\Delta E|$  < 0.12 GeV and 5.25 GeV/c<sup>2</sup> <  $M_{bc}$  < 5.27 GeV/c<sup>2</sup>
- Background estimation :  $0.13^{+0.04}_{-0.03}$  and  $0.12^{+0.03}_{-0.02}$ for B<sup>0</sup>  $\rightarrow$  K\*<sup>0</sup>X<sup>0</sup> and B<sup>0</sup>  $\rightarrow \rho^{0}$ X<sup>0</sup>, respectively



#### **Comparisons between MC and data**

 $B^0 \rightarrow K^{*0}X^0$ 



#### Systematic uncertainties and N<sub>obs</sub>

| Decay modes                  | Total systematic uncertainties |        |  |  |  |
|------------------------------|--------------------------------|--------|--|--|--|
|                              | scalar                         | vector |  |  |  |
| $B^0 \rightarrow K^{*0}X^0$  | 6.3 %                          | 6.3 %  |  |  |  |
| $B^0 \rightarrow \rho^0 X^0$ | 6.2 %                          | 6.3 %  |  |  |  |

 Dominant systematic uncertainties come from tracking efficiency (~ 4%) and muon identification (~ 4%)



No events are observed in the signal region for any of the modes with 657M BB-bar data sample

# Upper limits @ 90% C.L.

$$B(B^{0} \to VX^{0}, X^{0} \to \mu^{+}\mu^{-}) < \frac{S_{90}}{\varepsilon \times N_{B\overline{B}} \times B_{V}}$$

| V                   | : K <sup>*0</sup> or ρ <sup>0</sup>                                      | $B(K^{*0} \rightarrow K^{+}\pi^{-})$                                                                                    | <b>0.6651</b> |
|---------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|
| S <sub>90</sub>     | : signal yield at a 90% C.L.                                             | $B(K^{*0} \rightarrow K^{0}\pi^{0})$                                                                                    | 0.3326        |
| E                   | : signal efficiency with corrections of                                  | $B(K^{*0} \rightarrow K^{0}\gamma)$                                                                                     | 0.0023        |
| N <sub>BB-bar</sub> | : the number of BB-bar pairs, $657 \times 10^6$                          | $ \begin{array}{c} B(\rho^{0} \rightarrow \pi^{+}\pi^{-}) \\ B(\rho^{0} \rightarrow \pi^{+}\pi^{-}\gamma) \end{array} $ | <b>0.9894</b> |
| B <sub>V</sub>      | : $B(K^{*0} \rightarrow K^+\pi^-)$ or $B(\rho^0 \rightarrow \pi^+\pi^-)$ |                                                                                                                         | 0.0099        |

| Decay modes                  | Upper limits @ 90% C.L. |                         |  |  |  |  |
|------------------------------|-------------------------|-------------------------|--|--|--|--|
|                              | scalar                  | vector                  |  |  |  |  |
| $B^0 \rightarrow K^{*0}X^0$  | 2.27 × 10 <sup>-8</sup> | 2.27 × 10 <sup>-8</sup> |  |  |  |  |
| $B^0 \rightarrow \rho^0 X^0$ | $1.75 \times 10^{-8}$   | $1.75 \times 10^{-8}$   |  |  |  |  |

#### Lifetimes

- Constraints on Lifetime of X<sup>o</sup>(214)
  - $1.7 \times 10^{-15} \text{ s} \le \tau_{x^0} \le 4 \times 10^{-14} \text{ s}$  C.Q. Geng, Y.K. Hsiao, PLB 632, 215-218 (2006)
- We assume the lifetime of the X°(214) to be in the range from 10<sup>-15</sup> s to 10<sup>-12</sup> s

| Decay                                   | $B_0 \rightarrow K_{*0} X_0$ |                     |                     |                     | $B^0 \rightarrow \rho^0 X^0$ |                     |                     |                     |
|-----------------------------------------|------------------------------|---------------------|---------------------|---------------------|------------------------------|---------------------|---------------------|---------------------|
| modes                                   | sca                          | lar                 | vector              |                     | scalar                       |                     | vector              |                     |
| Lifetimes                               | 10 <sup>-15</sup> s          | 10 <sup>-12</sup> s | 10 <sup>-15</sup> s | 10 <sup>-12</sup> s | 10 <sup>-15</sup> s          | 10 <sup>-12</sup> s | 10 <sup>-15</sup> s | 10 <sup>-12</sup> s |
| ε <sub>cor</sub> [%]                    | 23.6                         | 23.3                | 23.5                | 23.6                | 20.7                         | 20.5                | 20.7                | 20.5                |
| N <sub>obs</sub>                        | 0                            | 0                   | 0                   | 0                   | 0                            | 0                   | 0                   | 0                   |
| N <sub>bkg</sub>                        | 0.13                         | 0.14                | 0.13                | 0.14                | 0.12                         | 0.13                | 0.12                | 0.13                |
| Syst. [%]                               | 6.2                          | 6.2                 | 6.2                 | 6.3                 | 6.2                          | 6.2                 | 6.3                 | 6.2                 |
| S <sub>90</sub>                         | 2.33                         | 2.33                | 2.33                | 2.33                | 2.33                         | 2.33                | 2.33                | 2.33                |
| U.L. at 90%<br>C.L. (10 <sup>-8</sup> ) | 2.26                         | 2.29                | 2.27                | 2.26                | 1.73                         | 1.75                | 1.73                | 1.75                |

# A Light Particle Search

TABLE I: Summary of the number of observed events  $(N_{obs})$ , estimated number of background events  $(N_{bg})$ , efficiencies  $(\epsilon)$ , signal yields  $(S_{90})$  and upper limits (U.L.) at 90% C.L. for the decays  $B^0_{K^*X}$  and  $B^0_{\rho X}$  with the scalar (vector) particle X. The errors on  $N_{bg}$  are statistical only.

| $M_{\mu\mu}$      |           | $B^0 \rightarrow K^{*0}X, K^*$                               | $^{0} \rightarrow K^{+}\pi^{-}$ | , $X \rightarrow \mu^+ \mu$ | _               |           | $B^0 \rightarrow \rho^0 X, \ \rho^0$            | $\rightarrow \pi^+\pi^-$ , 2 | $X \rightarrow \mu^+ \mu^-$ |                 |
|-------------------|-----------|--------------------------------------------------------------|---------------------------------|-----------------------------|-----------------|-----------|-------------------------------------------------|------------------------------|-----------------------------|-----------------|
| $({\rm MeV}/c^2)$ | $N_{obs}$ | $N_{bg}$                                                     | $\epsilon$                      | $S_{90}$                    | $U.L.(10^{-8})$ | $N_{obs}$ | $N_{bg}$                                        | $\epsilon$                   | $S_{90}$                    | $U.L.(10^{-8})$ |
| 212.0             | 0         | $0.03^{+0.01}_{-0.01} (0.03^{+0.01}_{-0.01})$                | 23.8(23.7)                      | 2.43(2.43)                  | 2.34(2.34)      | 0         | $0.02^{+0.01}_{-0.01} (0.02^{+0.01}_{-0.01})$   | 21.2(21.1)                   | 2.44(2.44)                  | 1.77 (1.78)     |
| 214.3             | 0         | $0.13^{+0.04}_{-0.03} \ (0.13^{+0.04}_{-0.03})$              | 23.6(23.5)                      | 2.33(2.33)                  | 2.26(2.27)      | 0         | $0.12^{+0.03}_{-0.02} (0.12^{+0.03}_{-0.02})$   | 20.7 (20.7)                  | 2.33(2.33)                  | 1.73(1.73)      |
| 220.0             | 0         | $0.13^{+0.02}_{-0.02} \ (0.13^{+0.02}_{-0.02})$              | 23.0(22.9)                      | 2.33(2.33)                  | 2.31 (2.33)     | 0         | $0.11^{+0.02}_{-0.01} (0.11^{+0.02}_{-0.01})$   | 20.2(20.1)                   | 2.33(2.33)                  | 1.78(1.78)      |
| 230.0             | 1         | $0.24\substack{+0.02\\-0.02}\ (0.25\substack{+0.02\\-0.02})$ | 21.4(21.4)                      | 4.09(4.12)                  | 4.37(4.40)      | 0         | $0.21^{+0.01}_{-0.01} (0.21^{+0.01}_{-0.01})$   | 18.8(18.9)                   | $2.27 \ (2.27)$             | 1.86(1.85)      |
| 240.0             | 0         | $0.38^{+0.02}_{-0.02} \ (0.39^{+0.02}_{-0.02})$              | 20.0(20.0)                      | 2.09(2.09)                  | 2.40(2.39)      | 0         | $0.32^{+0.01}_{-0.01} (0.32^{+0.01}_{-0.01})$   | 17.5(17.5)                   | 2.16(2.16)                  | 1.90(1.90)      |
| 250.0             | 0         | $0.51^{+0.01}_{-0.01} (0.51^{+0.01}_{-0.01})$                | 18.0 (18.4)                     | 1.92(1.94)                  | 2.43(2.41)      | 0         | $0.42^{+0.00}_{-0.00} (0.42^{+0.00}_{-0.00})$   | 15.9(16.3)                   | 2.06(2.06)                  | 1.99(1.94)      |
| 260.0             | 0         | $0.63^{+0.01}_{-0.01} (0.63^{+0.01}_{-0.01})$                | $16.5\ (17.2)$                  | 1.83(1.83)                  | 2.54(2.43)      | 0         | $0.60^{+0.01}_{-0.00} (0.70^{+0.01}_{-0.00})$   | 14.5(15.2)                   | 1.84(1.80)                  | 1.95(1.82)      |
| 270.0             | 0         | $0.75^{+0.02}_{-0.02} \ (0.75^{+0.02}_{-0.02})$              | 15.4(16.4)                      | 1.76(1.76)                  | 2.61(2.45)      | 0         | $0.61^{+0.02}_{-0.01} (0.61^{+0.02}_{-0.01})$   | 13.7(14.4)                   | 1.83(1.83)                  | 2.06(1.96)      |
| 280.0             | 0         | $0.69\substack{+0.03\\-0.03}\ (0.86\substack{+0.04\\-0.04})$ | 14.6(15.8)                      | 1.78(1.69)                  | 2.78(2.45)      | 1         | $0.83^{+0.03}_{-0.03} \ (0.90^{+0.04}_{-0.03})$ | 13.0(13.9)                   | 3.52(3.45)                  | 4.17 (3.83)     |
| 290.0             | 1         | $0.98^{+0.06}_{-0.06}\ (0.97^{+0.06}_{-0.06})$               | 14.0(15.5)                      | 3.35(3.37)                  | 5.47(4.99)      | 0         | $0.80^{+0.04}_{-0.04} \ (0.78^{+0.04}_{-0.04})$ | 12.4(13.6)                   | 1.74(1.74)                  | 2.16(1.97)      |
| 300.0             | 1         | $1.08^{+0.08}_{-0.08}\ (1.08^{+0.08}_{-0.08})$               | $13.6\ (15.1)$                  | 3.28(3.28)                  | 5.53(4.97)      | 1         | $0.87^{+0.05}_{-0.05}\ (0.87^{+0.05}_{-0.05})$  | $11.9\ (13.3)$               | 3.48(3.48)                  | 4.51 (4.01)     |

- 212 MeV/c<sup>2</sup> ~ 300 MeV/c<sup>2</sup> with  $\tau_{x^0} = 10^{-15}$  s
- No significant signal is observed
- The efficiencies are little changed as the lifetime of X°

#### **Summary and Conclusion**

- We have search for the HyperCP particle in B decay
  - No signals are observed in 211.6 MeV/ $c^2 < M_{\mu+\mu} < 217.2 \text{ MeV}/c^2$
  - The obtained upper limits @ 90% C.L. with  $\tau_{x^{\circ}} = 10^{-15}$  s are as follows :
    - X<sup>o</sup> as a scalar particle
      - B(B<sup>o</sup>  $\rightarrow$  K<sup>\*o</sup> X<sup>o</sup>)  $\times$  B(X<sup>o</sup>  $\rightarrow$   $\mu^+\mu^-$ ) < 2.26  $\times$  10<sup>-8</sup>
      - $\text{ B(B^{o} \rightarrow \rho^{o} \text{ X}^{o}) \times \text{ B(X^{o} \rightarrow \mu^{+}\mu^{-}) < 1.73 \times 10^{-8}}$
    - X<sup>o</sup> as a vector particle
      - $\text{ B(B^{o} \rightarrow \text{K}^{*o} \text{ X}^{o}) \times \text{ B(X^{o} \rightarrow \mu^{+}\mu^{-}) < 2.27 \times 10^{-8}$
      - $\text{ B(B^{o} \rightarrow \rho^{o} X^{o}) \times \text{ B(X^{o} \rightarrow \mu^{+}\mu^{-}) < 1.73 \times 10^{-8}}$
  - Our results rule out models II and III in the pseudoscalar sgoldstino interpretation
- No significant excess are observed for the X° of mass below 300 MeV/c<sup>2</sup> that covers a broader mass range
- The results are accepted by PRL

American Physical Society

close or Esc Key

Search for a low mass particle decaying into \mu^+ \mu^- in B^0 \rightarrow K\ast^0X and B^0 \rightarrow \rho^0X at Belle

H. J. Hyun et al.

Accepted Thursday Jul 29, 2010



#### Accepted Paper in Elementary Particles and Fields

Next >

Search for a low mass particle decaying into \mu^+ \mu^- in B^0 \rightarrow K\ast^0X and B^0 \rightarrow \rho^0X at Belle

< Prev

H. J. Hyun et al.

Accepted Thursday Jul 29, 2010

We search for dimuon decays of a low mass particle in the decays \bz K\*0 X and \bz r0 X using a data sample of 657 ×106 B ['B] events collected with the Belle detector at the KEKB asymmetric-energy e+ e- collider. We find no evidence for such a particle in the mass range from 212 \mmev to 300 \mmev for lifetimes below 10-12 s, and set upper limits on its branching fractions. In particular, we search for a particle with a mass of 214.3 \mmev reported by the HyperCP experiment, and obtain upper limits on the products \BR(\bzkx)×\BR(X m+ m-) < 2.26&nbsp; (2.27) &times;10-8 and \BR(\bzrhox)&times;\BR(X m+ m-) < 1.73&nbsp;(1.73) &times;10-8 at 90% C.L. for a scalar (vector) X particle.

Seminar @ KISTI

# **THANK YOU**

# BACK UP SLIDES

# X°(214) Search in Other Experiments

- hadron collider:
  - Do Experiment (PRL 103, 061801 (2009))

#### e⁺ e⁻ collider

- CLEO (PRL 101, 151802 (2008)): B(Y(1S)  $\rightarrow \gamma a_1^{\circ}, a_1^{\circ} \rightarrow \mu^+\mu^-) < 2.3 \times 10^{-6} @ 90\% C.L.$ (m<sub>ao</sub> = 214.3 MeV/c<sup>2</sup>)
- BaBar (PRL 103, 081803 (2009)): B(Y(3S)  $\rightarrow \gamma A^{\circ}, A^{\circ} \rightarrow \mu^{+}\mu^{-}) < 0.8 \times 10^{-6}$  @ 90% C.L. (m<sub>Ao</sub> = 214 MeV/c<sup>2</sup>)
- Fixed Target
  - E391a@KEK (PRL 102, 051802(2009))
  - E949@BNL (PRD 79, 092004(2009))
  - KTeV@FNAL (PoS(KAON09)039)

# X°(214) Search in Other Experiments

- at KEK E391a experiment E391a collaboration, Y. C. Tung, et al., Phys. Rev. Lett. 102, 051802 (2009)
  - B( $K_L^{o} \rightarrow \pi^{o}\pi^{o}X, X \rightarrow \gamma\gamma$ ) < 2.5 × 10<sup>-7</sup> @ 90% C.L. ( $m_X = 214.3 \text{ MeV/c}^2$ )



# X<sup>o</sup>(214) Search in Other Experiments

David G. Phillips II "Search for a New Pseudoscalar Particle in the Rare Decay  $K_{L} \rightarrow \pi^{0}\pi^{0}\mu^{+}\mu^{-''}$ at Rencontres de Moriond EW 2009

- Using  $N_{K,1997} = 3.24 \times 10^{11}$ ,  $N_{K,1999} = 4.11 \times 10^{11}$  and  $\sigma_r^2$ , one finds the following upper limits at 90% CL:



Seminar @ KISTI

#### Data set and Monte Carlo

- The X(214) search is based on 605 fb<sup>-1</sup> data sample (Exp.7 ~ Exp.55) which contains 657 million B meson pairs collected at the Y(4S) resonance with the Belle detector at the KEKB accelerator.
  - Summary of Monte Carlo samples

| A             | Data samples                                                                                           |                       |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Signal MC     | $B^0 \rightarrow K^{\star 0}~X^0,~K^{\star 0} \rightarrow K^-~\pi^+$ and $X^0 \rightarrow \mu^+~\mu^-$ | 300,000               |  |  |  |  |
|               | $B^0 \to \rho^0 \; X^0$ , $\rho^0 \to \pi^- \; \pi^+$ and $X^0 \to \mu^+ \; \mu^-$                     | 300,000               |  |  |  |  |
| Background MC | continuum qq-bar                                                                                       |                       |  |  |  |  |
|               | B <sup>0</sup> B <sup>0</sup> -bar                                                                     | 1750 fb <sup>-1</sup> |  |  |  |  |
|               | B+B-                                                                                                   |                       |  |  |  |  |

# **Dilepton skim**

- The MC data are skimmed by using the following requirements on leptons. The selection criteria in the dilepton skim are as follows,
  - eid(3, -1, 5) > 0.05
  - electron momentum at lab frame > 0.395 GeV/c
  - μid > 0.6
  - muon momentum at lab frame > 0.69 GeV/c
  - at least one opposite or same sign charged lepton pair (ee, μμ, eμ)
  - E(II) at CM frame > 1.3 GeV

#### **Event Selection**



| Charged track      | Selection requirement                                        |
|--------------------|--------------------------------------------------------------|
| Good charged track | dr < 1.0 cm<br> dz  < 5.0 cm                                 |
| electron           | eid > 0.9<br>P <sub>lab</sub> > 0.395 GeV/c                  |
| nuon               | µid > 0.95<br>P <sub>lab</sub> > 0.690 GeV/c                 |
| Caon               | kid > 0.6                                                    |
| pion               | remaining tracks after selecting the lepton and K tracks     |
| (*0                | $0.815 \text{ GeV/c}^2 < M_{K^*0} < 0.975 \text{ GeV/c}^2$   |
| ,0                 | $0.633 \text{ GeV/c}^2 < M_{\rho 0} < 0.908 \text{ GeV/c}^2$ |
| oest B             | minimum $\chi 2$ value of four charged tracks                |

# **Definition of Signal Region**

- Signal candidates are selected by the following two kinematic variables defined in the Υ(4S) c.m. frame.
  - Energy difference ( $\Delta E$ ) =  $E_B E_{beam}$
  - Beam-energy constrained mass  $(M_{bc}) = \sqrt{(E_{beam}^2 \sum p_B^2)}$

 $E_{beam}$ : the beam energy,  $E_B$ : the energy of the B candidate  $p_B$ : the momentum of the B candidate

#### $B^0 \rightarrow K^{*0}X^0$







Seminar @ KISTI

# X<sup>o</sup>(214) as a Vector particle

- X<sup>o</sup>(214) can be a vector particle
- SVV decay model (SVV\_HELAMP used)
  - fully longitudinal vs. fully transverse
  - 214.3 MeV/c<sup>2</sup> and immediately decays

| Decay mode |              | $B \rightarrow K^{*0}X^{0}$ | $B \rightarrow \rho^0 X^0$ |  |  |
|------------|--------------|-----------------------------|----------------------------|--|--|
| efficiency | longitudinal | (26.3 ± 0.1) %              | (23.6 ± 0.1) %             |  |  |
|            | transverse   | (27.9 ± 0.1) %              | $(30.0 \pm 0.1)$ %         |  |  |

# Helicity angle distribution

BN344, R.Itoh, 'Measurement of Polarization of  $J/\psi$  in  $B^0 \rightarrow J/\psi + K^{*0}$  and  $B^+ \rightarrow J/\psi + K^{*+}$  decays  $1 \qquad d^2\Gamma$ 

 $\overline{\Gamma} \, \overline{d \cos \theta_{\psi} d \cos \theta_{K^*}} =$ 

$$\frac{9}{32}(1$$

$$(1+\cos^2\theta_\psi)\sin^2\theta_{K^*}(1-\frac{\Gamma_L}{\Gamma})+\frac{9}{8}\sin^2\theta_\psi\cos^2\theta_{K^*}\frac{\Gamma_L}{\Gamma}$$



Figure 5: The definition of angles used in the helicity analysis

• B°  $\rightarrow$  K\*° X° K\*°  $\rightarrow$  K<sup>+</sup>  $\pi^{-}$ X°  $\rightarrow$   $\mu^{+}\mu^{-}$ 

$$\frac{\overline{\mathbf{P}}_{\mathbf{x}}^{\mathsf{T}} \cdot \overline{\mathbf{P}}_{\mathbf{x}}}{\cos \theta_{\mathbf{x}}} = \frac{\overline{\mathbf{P}}_{\mathbf{x}}^{\mathsf{T}} \cdot \overline{\mathbf{P}}_{\mu}}{|\overline{\mathbf{P}}_{\mathbf{x}}^{\mathsf{T}}||\overline{\mathbf{P}}_{\mu}^{\mathsf{T}}|}$$

 $\mathsf{Px}^-$  : momentum of  $\mathsf{X}^0$  at  $\mathsf{B}^0$  rest frame  $\mathsf{P}\mu^+$  : momentum of  $\mu+$  at  $\mathsf{X}^0$  rest frame

$$\cos \theta_{K^*} = \frac{\overrightarrow{P_{K^*}} \cdot \overrightarrow{P_K}}{|\overrightarrow{P_{K^*}}||\overrightarrow{P_K}|}$$

 $\mathsf{P}_{K^{\star 0}}\,$  : momentum of  $K^{\star 0}$  at  $\mathsf{B}^{0}$  rest frame  $\mathsf{P}_{K^{\star}}\,$  : momentum of  $K^{\star}$  at  $K^{\star 0}$  rest frame

Seminar @ KISTI

hjhyun@knu.ac.kr

#### Helicity Angle for K\*<sup>0</sup>X<sup>0</sup>



# Decay model study (1)

B to K\*<sup>o</sup> X<sup>o</sup> by PHSP 5.27 <  $M_{bc}$  < 5.29, -0.03 <  $\Delta E$  < 0.04, and 0.816 <  $M_{K*o}$  < 0.974 • B to K\*<sup>o</sup> X<sup>o</sup> by SVS 5.27 <  $M_{bc}$  < 5.29, -0.03 <  $\Delta E$  < 0.04, and 0.815 <  $M_{K*o}$  < 0.975



# Decay model study (2)



B to K\*<sup>o</sup> X<sup>o</sup> by SVS signal efficiency : 26.3 ± 0.1 %



# Decay model study (3)



Seminar @ KISTI

### Decay model study (4)



At Generator level blue : PHSP model red : SVS model

## Decay model study (5)



# Decay model study (6)



## Muon identification study (1)





\* common applied cut : bestb,  $\Delta E - M_{bc}$  signal region,  $M_{\mu\mu}$  <0.2170 GeV/c<sup>2</sup>

# Muon identification study (2)



red : muid>0.6 blue: muid>0.8 pink : muid>0.9 black : muid >0.95

From the upper plots, the bkg. shape looks like independent of likelihood on muon identification.

hjhyun@knu.ac.kr

# V-shape event study (1)

 Since dimuon mass of X°(214) is just 3 MeV above of two muon masses, tracking efficiency for small opening angle of two tracks is checked using real data sample

• B(B°  $\rightarrow$  J/ $\psi$ (1S)K<sup>+</sup> $\pi$ <sup>-</sup>) = (1.2 ± 0.6) × 10<sup>-3</sup>

- Use control sample,  $B^{\circ} \rightarrow J/\psi K pi, J/\psi \rightarrow \mu^{+}\mu^{-}$
- Check invariant mass of K and pi for the control sample
- B°/B°-bar bkg. MC exp7 ~ exp55 and real data exp7 ~ exp55 are used
  - bestb, 5.27 < M<sub>bc</sub> < 5.29, -0.03 < ∆E < 0.04</p>
  - 3.0 <  $M_{\mu\mu}$  < 3.2 for J/ $\psi$ (1S) selection
  - 0.6 < M<sub>kpi</sub> < 0.8 for low mass kaon-pion region</li>

## V-shape event study (2)



 There is no significant discrepancy between Data and MC for invariant masses of K and pi tracks, specially a few MeV above of threshold of those tracks

Seminar @ KISTI

hjhyun@knu.ac.kr

# Muon identification study (1)



Bkg. MC exp41 ~ exp55 and kpix signal MC are used.



\* common applied cut : bestb,  $\Delta E - M_{bc}$  signal region,  $M_{\mu\mu}$  <0.2170 GeV/c<sup>2</sup>

#### Muon identification study (2)



red : muid>0.6 green : muid>0.7 blue: muid>0.8 pink : muid>0.9 black : muid >0.95

 From the upper plots, the bkg. shape is independent of likelihood on muon identification.

#### Systematics : scalar and 214.3 MeV/c<sup>2</sup>

| De            | Decay mode                       |       | K* <sup>0</sup> X <sup>0</sup> |                     |       | ρ <sup>ο</sup> Χ <sup>ο</sup> |                     |  |  |
|---------------|----------------------------------|-------|--------------------------------|---------------------|-------|-------------------------------|---------------------|--|--|
| Sourc         | e \ lifetime                     | 0 s   | 10 <sup>-15</sup> s            | 10 <sup>-12</sup> s | 0 s   | 10 <sup>-15</sup> s           | 10 <sup>-12</sup> s |  |  |
| Integrated Lu | uminosity (N <sub>BB-bar</sub> ) | 1.4 % | 1.4 %                          | 1.4 %               | 1.4 % | 1.4 %                         | 1.4 %               |  |  |
| Signal        | Muon ID                          | 4.2 % | 4.2 %                          | 4.2 %               | 4.1 % | 4.1 %                         | 4.1 %               |  |  |
| efficiency    | charged kaon ID                  | 0.8 % | 0.8 %                          | 0.8 %               | -     | -                             | -                   |  |  |
|               | charged pion ID                  | 0.5 % | 0.5 %                          | 0.5 %               | 1.0 % | 1.0 %                         | 1.0 %               |  |  |
|               | Tracking                         | 4.2 % | 4.2 %                          | 4.2 %               | 4.2 % | 4.3 %                         | 4.3 %               |  |  |
|               | MC statistics                    | 0.1 % | 0.1 %                          | 0.1 %               | 0.1 % | 0.1 %                         | 0.1 %               |  |  |
| Cut           | M <sub>bc</sub>                  | 0.6 % | 0.5 %                          | 0.3 %               | 0.7 % | 0.3 %                         | 0.4 %               |  |  |
| variables     | ΔE                               | 0.6 % | 0.5 %                          | 0.4 %               | 0.7 % | 0.3 %                         | 0.4%                |  |  |
| 14            | K <sup>*0</sup> mass             | 0.6 % | 0.5 %                          | 0.4 %               | -     | -                             | -                   |  |  |
|               | $ ho^0$ mass                     | -     | -                              | -                   | 0.7 % | 0.3 %                         | 0.5%                |  |  |
| 9             | Total                            | 6.3 % | 6.2 %                          | 6.2 %               | 6.2 % | <b>6.2</b> %                  | 6.2 %               |  |  |

#### Systematics : vector and 214.3 MeV/c<sup>2</sup>

| De            | Decay mode                       |       | K* <sup>0</sup> X <sup>0</sup> |                     |       | ρ⁰Χ⁰                |                     |  |  |
|---------------|----------------------------------|-------|--------------------------------|---------------------|-------|---------------------|---------------------|--|--|
| Sourc         | e \ lifetime                     | 0 s   | 10 <sup>-15</sup> s            | 10 <sup>-12</sup> s | 0 s   | 10 <sup>-15</sup> s | 10 <sup>-12</sup> s |  |  |
| Integrated Lu | uminosity (N <sub>BB-bar</sub> ) | 1.4 % | 1.4 %                          | 1.4 %               | 1.4 % | 1.4 %               | 1.4 %               |  |  |
| Signal        | Muon ID                          | 4.2 % | 4.2 %                          | 4.2 %               | 4.1 % | 4.1 %               | 4.1 %               |  |  |
| efficiency    | charged kaon ID                  | 0.8 % | 0.8 %                          | 0.8 %               | -     | -                   | -                   |  |  |
|               | charged pion ID                  | 0.5 % | 0.5 %                          | 0.5 %               | 1.0 % | 1.0 %               | 1.0 %               |  |  |
|               | Tracking                         | 4.2 % | 4.2 %                          | 4.2 %               | 4.3 % | 4.3 %               | 4.3 %               |  |  |
|               | MC statistics                    | 0.1 % | 0.1 %                          | 0.1 %               | 0.1 % | 0.1 %               | 0.1 %               |  |  |
| Cut           | M <sub>bc</sub>                  | 0.6 % | 0.3 %                          | 0.7%                | 0.6 % | 0.6 %               | 0.5 %               |  |  |
| variables     | ΔΕ                               | 0.6 % | 0.3 %                          | 0.7 %               | 0.6 % | 0.6 %               | 0.5 %               |  |  |
|               | K <sup>*0</sup> mass             | 0.6 % | 0.3 %                          | 0.7 %               | -     | -                   | -                   |  |  |
|               | $ ho^0$ mass                     | -     | -                              | -                   | 0.6 % | 0.6 %               | 0.5 %               |  |  |
| 9             | Total                            | 6.3 % | 6.2 %                          | <b>6.3</b> %        | 6.3 % | 6.3 %               | 6.2%                |  |  |