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1. Introduction

Nothing
B=0

Universe

Everything

Space, Time, Matter, ...
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Matter-Antimatter Asymmetry of the Universe?.

Locally antimatter area (?) → Significant Photon Flux (×)

→ Baryon Asymmetry of the Universe?

-A. D. Sakharov, JETP Lett. 5, 24 (1967)

(1) The presence of baryon number(B) violation: Axial anomaly

(2) The violation of Both C (Charge Conjugation) and CP:

- C is maximally violated !; Γ(π+ → μ+νL) �= Γ(π− → μ−ν̄L) = 0

- CP Vioaltion: CKM matrix

(3) A departure from thermal equilibrium:

The existence of the thermal non-equilibrium during the evolution of

Universe −→ First order phase transition
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First order phase transition (Figure)

Potential at T �= 0

1 GeV = 1.1605 × 1013 K

V = V (φ, T ) = V (φ, 0)+V1(φ, 0)+V1(φ, T )

Symmetry Restoration at High T

A: Symmetric phase state

B: Broken phase state

© Strongly first order phase transition(Baryon Preserving condition)

� Sphaleron(Greek for ready to fall) Constraint; φC ≥ TC

© Weakly first order phase transition: φC < TC

4



- Sakharov pointed out that the observed baryon asymmetry of the

Universe can be produced by processes which violate C, CP and B

and occurs out of thermal equilibrium.

- The three conditions can be satisfied in the Standard Model; C-

violation exists, CP violating terms can be accomodated, sphaleron at

finite temperature can induce sufficient B-violating processes.

- A first order phase transition can provide the nonthermal equilibrium.

Furthermore, in order to have sufficient departure from equilibrium,

it is necessary that this transition be rather strong.

- The value of the ratio of the Higgs field (vc) and the critical temper-

ature (Tc) should at least be about 1.0: vc/Tc ≥ 1.
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(a) Standard Model

- At finite temperature, the SM effective potential constructed so far

obtains this ratio to be rather small.

- It has been shown to decrease when the SM Higgs mass is increased.

- ElectroWeak Phase Transition (EWPT) in the Standard Model

V (φ, T ) = −μ2

2
φ2 +

λ

4
φ4 + V1(φ, 0) + V1(φ, T ) .
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where i = W, Z, t, φ, G; Boson(−) and Fermion (+).
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- High Temperature Approximation

V
(high T )
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log Cf = 2.64, log Cb = 5.41

5 % deviation for mf/T < 1.6, mb/T < 2.2
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, ab = exp(3.91) , af = exp(1.14) ,
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(b) Minimal Supersymmetric Standard Model⊙
Light Stop Scenario: mt̃R

< mt

- Opening the window for electroweak baryogenesis, M. Carena, M.

Quiros, C.E.M. Wagner, Phys. Lett. B380, 81 (1996).

- A Light stop and electroweak baryogenesis, D. Delepine, J.M. Gerard,

R. Gonzalez Felipe, J. Weyers, Phys. Lett. B386, 183 (1996).

In electroweak baryogenesis scenario, we always need a boson particle

with a mass of the electroweak scale in order to induce a strong phase

transition.

That reason comes from the heavy top quark because a heavy fermion

makes weak the phase transition.
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Left: Electroweak baryogenesis and the Higgs and stop masses, M.
Quiros, Nucl. Phys. Proc. Suppl. 101, 401 (2001)
Right: Electroweak phase transition in the MSSM with four genera-
tions, S.W. Ham, S.K. Oh, and D. Son, PRD71, 015001 (2005)
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(c) Non-Minimal Supersymmetric Standard Model

� μ-problem (∼ μH1H2); J.E. Kim, H.P. Nilles, PLB138, 150 (1984)

	 SU (2) × U (1)

Next-to-MSSM (NMSSM), Minimal Non-MSSM (MNMSSM)

Two Higgs doublets + One Higgs singlet

S1, S2, S3, P1, P2, H±, χ̃0
1 − χ̃0

5

	 SU (2) × U (1) × U (1)′ : USSM; S1, S2, S3, A, H±, Z ′, χ̃0
1 − χ̃0

6, D

	 SU (2) × U (1) × U (1)′ × U (1)′′: E6 SUSY Model

S1, S2, S3, S4, A, H±, Z ′, Z ′′, χ̃0
1 − χ̃0

7, D

- μ-parameter: μ ∼ λ〈N〉, VEV of Higgs singlet

- SUSY/ : Soft Terms
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- Electroweak phase transition in MSSM with U (1)′ in explicit CP vio-
lation scenario, S.W. Ham, S.K. Oh, Phys. Rev. D76, 095018 (2007).
- Electroweak phase transitions in the MSSM with an extra U (1)′, S.W.
Ham, E.J. Yoo, S.K. Oh, Phys. Rev. D76, 075011 (2007).
- Phase transition in a supersymmetric axion model, S.W. Ham, S.K.
Oh, Phys. Rev. D76, 017701 (2007).
- Electroweak phase transition in an extension of the standard model
with a real Higgs singlet. S.W. Ham, Y.S. Jeong S.K. Oh, J. Phys.
G31, 857 (2005).
- Electroweak phase transition in the MSSM with four generations,
S.W. Ham, S.K. Oh, D. Son, Phys. Rev. D71, 015001 (2005).
- Electroweak phase transition in the standard model with a dimension-
six Higgs operator at the one-loop level, S.W. Ham, S.K. Oh, Phys.
Rev. D70, 093007 (2004).
- Electroweak phase transition in a nonminimal supersymmetric model,
S.W. Ham, S.K. Oh, C.M. Kim, E.J. Yoo, D. Son, Phys. Rev. D70,
075001 (2004).
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EWPT in the Non-MSSMs

φc > Tc for mt̃1
> mt (There are Trilinear Terms in the Non-MSSMs)

NMSSM: ∼ λAλH1H2N + kAkN
3/3 (M. Pietroni, NPB402, 27, 1993)

MNMSSM, USSM: ∼ λAλH1H2N

MNMSSM: Electroweak phase transition in a nonminimal supersym-

metric model, S.W. Ham, S.K. OH, C.M. Kim, E.J. Yoo, D. Son,

PRD70, 075001 (2004)

USSM: Electroweak phase transitions in the MSSM with an extra U (1)′,

S.W. Ham, E.J. Yoo, S.K. Oh, PRD76, 075011 (2007)

Electroweak phase transition in MSSM with U (1)′ in explicit CP vio-

lation scenario, S.W. Ham, S.K. Oh, PRD76, 095018 (2007)
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⊙
Beyond MSSM

- Higgs Physics as a Window Beyond the MSSM (BMSSM), Michael

Dine, Nathan Seiberg, Scott Thomas, Phys. Rev. D76:095004 (2007).⊙
Motivation

- Recently, Dine, Seiberg, and Thomas have investigated the effects of

new physics beyond the MSSM within the framework of effective field

theory analysis.

- If the new physics beyond the MSSM lies at an energy scale M ,

the corrections to the MSSM may be described in terms of higher-

dimensional operators.

- These higher-dimensional operators emerge from a power series of
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1/M in the low-energy effective Lagrangian density.

- Even though the higher dimensional operators are suppressed by the

power of the new physics scale 1/M , the leading order effects of these

operators on the physical observables may be phenomenologically com-

parable to the one-loop effects of some theories beyond the MSSM.

- Thus, it is worthwhile studying the implications of these higher di-

mensional operators in the Higgs phenomenology.

- Dine, Seiberg, and Thomas show that the effective dimension of the

operators are five or more.

- The Higgs sector of the simplest version has just two dimension-five

operators with the MSSM particle content, at a energy scale below M .
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- We call it as the Dine-Seiberg-Thomas model (DSTM).

- The scale of some gauge-mediated supersymmetric scenarios require

10 − 1000 TeV.

- The effective field analysis may be useful in the phenomenological

point of view, since it is valid for a wide range of energy scale from

the SUSY breaking scale to the scale of new physics.

- The DSTM has two Higgs doublets like the MSSM, but its Higgs

structure is different from the MSSM.

Hd =

⎛
⎜⎝ H0

d

H−
d

⎞
⎟⎠ =

⎛
⎜⎝ φ1 +

H0
dr+iH0

di√
2

H−
d

⎞
⎟⎠ , Hu =

⎛
⎜⎝ H+

u

H0
u

⎞
⎟⎠ =

⎛
⎜⎝ H+

u

φ2 +
H0

ur+iH0
ui√

2

⎞
⎟⎠ .
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The Higgs boson masses can be expressed by

mh = m0
h(mA0, tan β) + m1

h(mt,mt̃i
) + md5

h (εi) ,

mH± = mA0 + mW + m1
h(mt,mt̃i

) + md5
h (εi) .

- At the tree-level, the Higgs potential of the DSTM is given as

V0 = m2
uH

†
uHu + m2

dH
†
dHd − (m2

udHuHd + H.c.) +
λ1

2
(H†

uHu)
2 +

λ2

2
(H†

dHd)
2

+ λ3(H
†
uHu)(H

†
dHd) + λ4(H

†
uHu)(H

†
dHd)

+

[
λ5

2
(HuHd)

2 +
{

λ6(H
†
uHu) + λ7(H

†
dHd)

}
HuHd + H.c.

]
,

where m2
d ≡ m2

Hd
+ |μ|2, m2

u ≡ m2
Hu

+ |μ|2, m2
ud ≡ −μB, and λi (i = 1-7) are

the quartic couplings.
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- They are defined as

λ1 = λ2 =
1

4
(g′2 + g2), λ3 =

1

4
(g2 − g′2) ,

λ4 = −1

2
g2 , λ5 = 2ε2 , λ6 = λ7 = 2ε1 ,

where g′ and g are respectively the gauge coupling coefficients of U (1)Y

and SU (2)L, and ε1 and ε2 are the coupling coefficients representing the

interactions of two dimension-five operators.

- Note that md and mu may be eliminated by the two minimum condi-

tions that define the vacuum with respect to φd and φu.

Including the DST terms, the one-loop effective potential for the Higgs
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scalars at finite temperature is given by

V = m2
1|φ1|2 + m2

2|φ2|2 −
(
m2

12φ1φ2 + h.c.
)

+
g2 + g′2

8

(|φ1|2 − |φ2|2
)2

− 2
(|φ1|2 + |φ2|2

)
[ε1φ1φ2 + h.c.] +

[
ε2 (φ1φ2)

2 + h.c.
]

+
∑

i={dof}

nim
4
i (φ)

64π2

[
ln

(
m2

i (φ)

Q2

)
− 3

2

]

+
∑

i={dof}
ni

T 4

2π2
Ji

(
m2

i (φ)

T 2

)
+

∑
i={sca}

niT

12π

[
m3

i (φ) − m̄3
i (φ, T )

]
.

The summation goes over

{dof} = {t, b, t̃1,2, b̃1,2, He, Ho,Hc,WT, ZT , γT , WL, ZL, γL} ,
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with

nt = nb = −12, nt̃1,2
= nb̃1,2

= 6,

nHe = nHo = 2, nHc = 4,

nWT
= 4, nZT

= nγT
= 2, nWL

= 2, nZL
= nγL

= 1 .

- Here He and Ho refer to, respectively, the two CP-even and two CP-

odd neutral Higgs bosons; Hc are the charged Higgs bosons; sub-indices

T and L stand for, respectively, transverse and longitudinal.

- The fourth line is the finite-temperature contribution. The Ji func-

tions are defined by

Ji(r) =

∫ ∞

0

dx x2 ln[1 − (−1)2sie−
√

x2+r] .
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The last term corresponds to daisy improvement.

- The masses m̄2
i (φ, T ) are the field- and temperature-dependent eigen-

values of the mass matrices with first-order thermal masses included.

- The summation is over

{sca} = {t̃1,2, b̃1,2, He,Ho, Hc, WL, ZL, γL} .

The region in MSSM parameter space which is compatible with a

strong enough first-order phase transition has two distinctive char-

acteristics

1. A light, (mostly) right-handed stop:

mt̃R
<∼ mt;
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2. A light Higgs, close to the LEP lower bound:

mh ≈ 115 GeV .

- The condition for the sphaleron processes in the broken phase not

to erase the baryon asymmetry that is produced along the expanding

bubble wall reads

√
2vc

Tc

>∼ 1 .

Here vc = v(Tc) and Tc are the Higgs VEV and the temperature at the

instance in which the symmetric and the asymmetric vacua become

degenerate. The normalization is such that v0 = v(T = 0) = 174 GeV.
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The light stop constraint comes from the need to reduce thermal

screening for at least one scalar which has a large coupling to the

Higgs field. EW precision measurements can be accommodated more

easily if this light stop is dominantly ‘right-handed’. Let us focus on

the case of large but finite m2
A � m2

Z. The minimization of the potential

reduces in this case to a one dimensional problem, yielding

vc

Tc
≈ E

λ
.

Here E is the coefficient of the cubic (barrier) term. If the soft mass-

squared of t̃R is chosen negative such that it cancels exactly the thermal
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mass at the critical temperature, one has

E ≈ h3
t sin3 β

(
1 − X2

t /m
2
Q

)3/2

2π
.

For small stop mixing, X2
t /m

2
Q � 1, E can be of order 0.1 and thus an

order of magnitude larger than the SM contribution due to transverse

gauge bosons, ESM ∼ 0.01.

Most importantly, the requirement of negative m2
U forces mt̃R

< mt.

Within one-loop analysis, one must in fact impose a rather strong

constraint, m2
U ∼ − (80 GeV )2 or equivalently mt̃R

∼ 150 GeV, to obtain
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a strong enough PT. Two-loop calculations extend as

vc

Tc
≈ E

2λ
+

√
E2

4λ2
+

c2

λ
,

where c2 is the coefficient of the generic two-loop correction,

ΔV (2−loop) ≈ −c2T
2φ2 ln

φ

T
.

The above Eq. explains how two-loop corrections make room for some

stop mixing and relax the upper bound on m2
U . However, sizeable

positive values of m2
U or large mixing are still forbidden, as they directly

decrease E.
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3. CP violation in the Higgs sector

(a) CP mixing in the MSSM

- The Magnitude of the Cosmological Baryon Asymmetry, S.M. Barr,

G. Segre, H.A. Weldon, PRD20, 2494 (1979)

- CKM : nB
nγ

∼ 10−20, Our Universe : nB
nγ

∼ 10−8 (10−10)

- Gauge theory of CP violation, S. Weinberg, PRL37, 657 (1976)

- In principle, CP violation is induced by the mixing between the

scalar and pseudoscalar Higgs bosons for any model that has at least

two Higgs doublets.

- Supersymmetric standard models, including the MSSM and the DSTM,

share this property.
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- It has been observed that the MSSM has some difficulties in realizing

CP violations, although the complex phases in μ and the soft SUSY

breaking parameters are the possible sources of CP violation.

- Explicit CP violation, arising directly from the complex phases in

these parameters, is viable in the MSSM at the one-loop level due

to the radiative CP mixing among the scalar and pseudoscalar Higgs

bosons.

- Neutral Higgs boson masses of the MSSM at the one-loop level in

an explicit CP violation scenario, S.W. Ham, S.K. Oh, E.J. Yoo, C.M.

Kim, D. Son, Phys. Rev. D68, 055003 (2003).

- The mass of the charged Higgs boson in the minimal supersymmetric
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standard model with explicit CP violation at 1-loop level, S.W. Ham,

S.K. Oh, E.J. Yoo, H.K. Lee, J. Phys. G27, 1 (2001).

- MSSM Radiative CP violation; No CP phase at the tree level

CPsuperH, J.S. Lee, A. Pilaftsis, M.S. Carena, S.Y. Choi, M. Drees,

J.R. Ellis, C.E.M. Wagner, Comput. Phys. Commun. 156, 283 (2004)

- FeynHiggs, M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rze-

hak, G. Weiglein, JHEP 0702, 047 (2007)

- Thermodynamic generation of the baryon asymmetry, Andrew G.

Cohen and David B. Kaplan, Phys. Lett. B199, 251 (1987).

- Spontaneous baryogenesis, Andrew G. Cohen and David B. Kaplan,

Nucl. Phys. B308, 913 (1988)
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- Spontaneous baryogenesis at the weak phase transition, A.G. Cohen,

D.B. Kaplan, A.E. Nelson, Phys. Lett. B263, 86 (1991).

- Spontaneous CP violation at the tree-level is impossible in the MSSM,

since the complex phases in the vacuum expectation values of the two

Higgs doublets may always be eliminated by a global phase rotation.

- At the one-loop level, the complex phases in the vacuum expectation

values of two the Higgs doublets do not cancel and thus may trigger

the spontaneous CP violation in the MSSM.

- However, one of the scalar Higgs bosons in the MSSM turns out to

be very light, which is excluded by the LEP data.
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(b) CP Mixing in the Non-Minimal Supersymmetric Standard Model
- NMSSM
- The absolute upper bound on the 1-loop corrected mass of the lightest
scalar Higgs boson in the next-to-minimal supersymmetric standard
model, S.W. Ham, S.K. Oh, B.R. Kim, J. Phys. G22, 1575 (1996).
- Experimental constraints on the parameter space of the next-to-
minimal supersymmetric standard model at LEP 2, S.W. Ham, S.K.
Oh, B.R. Kim, Phys. Lett. B414, 315 (1997).
CP Mixing in the NMSSM
- Spontaneous violation of the CP symmetry in the Higgs sector of the
next-to-mninimal supersymmetric standard model, S.W. Ham, S.K.
Oh, H.S. Song, Phys. Rev. D61, 55010 (2000).
- Charged Higgs Boson in the Next-to-Minimal Supersymmetric Stan-
dard Model with Explicit CP Violation, S.W. Ham, J. Kim, S.K. Oh,
D. Son, Phys. Rev. D64, 35007 (2001).
- Neutral Higgs sector of the next-to-minimal supersymmetric stan-
dard model with explicit CP violation, S.W. Ham, S.K. Oh, D. Son,
Phys. Rev. D65, 075004 (2002).
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- Possibility of spontaneous CP violation in the nonminimal supersym-
metric strandard model with two neutral Higgs singlets, S.W. Ham,
S.K. Oh, D. Son, Phys. Rev. D66, 015008 (2002).
- Higgs bosons of the NMSSM with explicit CP violation at the ILC,
S.W. Ham, S.H. Kim, S.K. Oh, D. Son, Phys. Rev. D76, 115013
(2007).
- Neutral Higgs bosons in the MNMSSM with explicit CP violation,
S.W. Ham, J.O. Im, S.K. Oh, Eur. Phys. J. C58, 579 (2008).
- USSM
- Neutral scalar Higgs bosons in the USSM at the LHC, S.W. Ham,
T. Hur, P. Ko, S.K. Oh, J. Phys. G35, 095007 (2008).
- Higgs bosons of a supersymmetric U (1)′ model at the ILC, S.W. Ham,
E.J. Yoo, S.K. Oh, D. Son, Phys. Rev. D77, 114011 (2008).
- Explicit CP violation in a MSSM with an extra U (1)′, S.W. Ham, E.J.
Yoo, S.K. Oh, Phys. Rev. D76, 015004 (2007).
- CP Mixing in the SUSY E6 Model
- Higgs bosons of a supersymmetric E6 model at the Large Hadron Col-
lider, S.W. Ham, J.O. Im, E.J. Yoo, S.K. Oh, JHEP 0812:017 (2008).
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(c) CP Mixing in the DSTM
- Possibility of spontaneous CP violation in Higgs physics beyond the
minimal supersymmetric standard model, S.W. Ham, Seung-A Shim,
S.K. Oh, Phys. Rev. D80, 055009 (2009).
- Since the DSTM has two Higgs doublets, it also has the possibilities
of CP violation.
- In this article, we study whether the DSTM may accommodate CP
violation in its Higgs sector.
- We find that the CP violation may occur spontaneously in the Higgs
sector of the DSTM at the one-loop level, without contradicting the
negative results of the light Higgs search at LEP2.
- The radiative corrections to the tree-level Higgs sector of the DSTM
are calculated by taking into account the top and scalar top quark loop
contributions.
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4. Conclusions
- The BMSSM window for baryogenesis allows for parameters that are
significantly more natural than those of the MSSM.
- Spontaneous CP violation may take place in the DSTM at the one-
loop level, but not at the tree-level, for a reasonable parameter region.
- We would like note that the spontaneous CP violation in the DSTM
is not radiative CP mixings because there is a non-trivial CP phase at
the tree level.
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