Resummation of Relativistic

 Corrections to $J / \psi \rightarrow e^{+} e^{-}$
PHYSICAL REVIEW D 79, 014007 (2009)

 hep-ph/0807.2634Jungil Lee

Korea University
In collaboration with Geoffrey T. Bodwin (Argonne), Hee Sok Chung and Chaehyun Yu (Korea U.)

August 24
KISTI
Tevatron B physics workshop

Outline

- Quarkonium electromagnetic current
- A new method to compute I-loop NRQCD corrections to all orders in v
- Resummation of relativistic corrections
- Summary

Quarkonium Electromagnetic Current

- Full QCD definition:

$$
\left(-i e e_{Q}\right) i \mathcal{A}_{H}^{\mu}=\langle 0| J_{\mathrm{EM}}^{\mu}|H\rangle, J_{\mathrm{EM}}^{\mu}=\left(-i e e_{Q}\right) \bar{\psi} \gamma^{\mu} \psi
$$

- NRQCD factorization formula

$$
i \mathcal{A}_{H}^{i}=\sqrt{2 m_{H}} \sum_{n} c_{n}\langle 0| \mathcal{O}_{n}^{i}|H\rangle
$$

\mathcal{O}_{n}^{i} : NRQCD operators involving $Q \bar{Q}$ decay in terms of two-component Pauli spinor fields
c_{n} : Short-distance coefficients that are free of \mathbb{R} divergences and calculable perturbatively

- Short-distance coefficients can be computed by perturbative matching:

$$
i \mathcal{A}_{Q \bar{Q}_{1}}^{i}=\sum c_{n}\langle 0| \mathcal{O}_{n}^{i}\left|Q \bar{Q}_{1}\right\rangle
$$

$\langle 0| \mathcal{O}_{n}^{i}\left|Q \bar{Q}_{1}\right\rangle$: perturbative NRQCD matrix element

- We only consider $Q \bar{Q}$ operators.
- Matching coefficients at order α_{s} are determined as

IR sensitive

- General structure of full-QCD amplitude for a color-singlet $Q \bar{Q}$ pair:

$$
\begin{aligned}
i \mathcal{A}_{Q \bar{Q}_{1}}^{i} & =\bar{v}\left(p_{2}\right)\left(G \gamma^{i}+H q^{i}\right) u\left(p_{1}\right) \\
& =G \eta^{\dagger} \sigma^{i} \xi-\left[\frac{G}{E(E+m)}+\frac{H}{E}\right] q^{i} \eta^{\dagger} \boldsymbol{q} \cdot \boldsymbol{\sigma} \xi . \\
\downarrow & \mathcal{O}_{B}^{i}=\chi^{\dagger}\left(-\frac{i}{2} \nabla^{i}\right)\left(-\frac{i}{2} \nabla \cdot \boldsymbol{\sigma}\right) \psi
\end{aligned}
$$

(S \& D wave)

- IR divergence emerges from order α_{s} Recreganes
$G=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left\{2\left[\left(1+\delta^{2}\right) L(\delta)-1\right] \frac{1}{\epsilon_{\mathrm{IR}}}+\left(1+\delta^{2}\right)\left[\frac{\pi^{2}}{\delta}-\frac{i \pi}{\delta} \frac{1}{\epsilon_{\mathrm{IR}}}\right]+\cdots\right\}$,
$H=\frac{\alpha_{s} C_{F}}{4 \pi} \frac{1-\delta^{2}}{m}\left[-\frac{i \pi}{\delta}+\cdots\right]$. Coulomb divergence $\frac{L(\delta)}{}=\frac{1}{2 \delta} \log \left(\frac{1+\delta}{1-\delta}\right)$,
Long-distance contribution
$\left[i \mathcal{A}_{Q Q_{1}}^{i(1)}\right]_{\text {NRQCD }}$ must be subtracted.
- $c_{n}^{(0)}$ is known to all orders in $v^{2 n}$ Bodwin, Chung, Kang, Lee, and Yu (PRD77, 0940I7)
- Determination of $c_{n}^{(1)}$
$i \mathcal{A}_{Q \mathcal{Q}_{1}}^{i(1)}-\left[i \mathcal{A}_{Q(1)}^{i(1)}\right]_{\mathrm{NRQCD}}=\sum_{n} c_{n}^{(1)}\langle 0| \mathcal{O}_{n}^{i}\left|Q \bar{Q}_{1}\right\rangle^{(0)}$
$i \mathcal{A}_{Q Q_{1}}^{i(1)}-\left[i \mathcal{A}_{Q Q_{1}}^{i(1)}\right]_{\mathrm{NRQCD}}=\Delta G^{(1)} \eta^{\dagger} \sigma^{i} \xi-\left[\frac{\Delta G^{(1)}}{E(E+m)}+\frac{\Delta H^{(1)}}{E}\right] q^{i} \eta^{\dagger} \boldsymbol{q} \cdot \sigma \xi$
- In this work, we compute $c_{n}^{(1)}$ to all orders in v

References for $c_{n}^{(i)}$

	v^{0}	v^{2}	v^{4}	$v^{\text {all }}$
$\alpha_{s}^{\mathbf{0}}$	$[1]$	$[1]$	$[2]$	$[\mathrm{X}]$
α_{s}^{1}	$[3],[4]$	$[5]$	$[Y]$	$[Y]$
α_{s}^{2}	$[6],[7]$			

[I] Bodwin, Braaten, Lepage, PRD 5I, I I 25
[2] Bodwin, Petrelli, PRD 66, 0940 II
[3] Barbieri et al., PL 57B, 455
[4] Celmaster, PRD 19, 1517
[5] Luke, Savage, PRD 57, 4 I3
[6] Czarnecki, Melnikov, PRL 80, 2531
[7] Beneke, Signer, Smirnov, PRL 80, 2535
[X] Bodwin, Chung, Kang, Lee, Yu, PRD 77, 094017
[Y] This work

Computation of $\left[i \mathcal{A}_{Q Q_{1}}^{i(1)}\right]_{\mathrm{NRQCD}}$

- Calculation of $\left[i A_{Q Q_{2}}^{i(1)}\right]_{\text {NRQCD }}$ to higher orders in v requires knowledge of a huge number of
- NRQCD operators,
- the interactions,
) 4-spatial-gluon and the Feynman rules to compute loop corrections.
- This becomes a daunting task at all orders in v.

BBL Method to compute $\left[i \mathcal{A}_{Q Q_{1}}^{i(1)}\right]_{\mathrm{NRQCD}}$

i) Use NRQCD perturbation theory to construct amplitude.
ii) Integrate out k_{0}.
iii) Expand the integrand in powers of 3-momenta divided by m.
iv) Discard power-divergent scaleless integrals.
We propose a new method that replaces step i).

A new method of calculation

- Interactions in NRQCD through infinite order in v is equivalent to QCD, but with the interactions re-arranged in an expansion in powers of v.
- Instead of using NRQCD perturbation theory, we expand the full-QCD integrand in powers of 3 -momenta divided by m after evaluating k_{0} integral.

Comparison with Method of Regions

- At lowest order in \boldsymbol{v}, the method of regions [Beneke and Smirnov (NPB 1998)] has been used to compute order- α_{s}^{2} correction to quarkonium EM current Beneke, Signer, Smirnov (PRL I998)
ultrasoft soft hard
$\sim m v^{2}$
$\sim m v$
- In MoR, contribution from each region can be computed separately by expanding small parameters

Comparison with Method of Regions

- With MoR, it is difficult to obtain a closed-form formula for the hard part valid to all orders in \boldsymbol{v}.
- In our method, the NRQCD contribution becomes a simple series that can be resummed easily, yielding very compact expressions for the hard part.
- In dimensional regularization, our method is equivalent to calculating "soft + ultrasoft + potential" part by MoR.
- Our method also works for hard cut-off like lattice, but MoR does not.

Our final results

- IR pole cancels in $i \mathcal{A}_{Q Q_{1}}^{i(1)}-\left[i \mathcal{A}_{Q Q_{1}}^{i(1)}\right]_{\mathrm{NRQCD}}$
- UV pole is absorbed by redefining NRQCD operators in $\overline{M S}$ scheme:

$$
\begin{aligned}
& \begin{aligned}
\Delta G^{(1)} \mathrm{MS} & =\frac{\alpha_{s} C_{F}}{4 \pi}\left\{2\left[\left(1+\delta^{2}\right) L(\delta)-1\right] \log \frac{\mu^{2}}{m^{2}}\right. \\
& \left.\quad+6 \delta^{2} L(\delta)-4\left(1+\delta^{2}\right) K(\delta)-4\right\}
\end{aligned} \\
& \begin{aligned}
\Delta H^{(1)}= & \frac{\alpha_{s} C_{F}}{4 \pi} \frac{2\left(1-\delta^{2}\right)}{m} L(\delta) \\
L(\delta) & =\frac{1}{2 \delta} \log \left(\frac{1+\delta}{1-\delta}\right)=1+\frac{\delta^{2}}{3}+O\left(\delta^{4}\right) \\
K(\delta) & =\frac{1}{4 \delta}\left[\operatorname{Sp}\left(\frac{2 \delta}{1+\delta}\right)-\operatorname{Sp}\left(-\frac{2 \delta}{1-\delta}\right)\right]=1+\frac{4 \delta^{2}}{9}+O\left(\delta^{4}\right)
\end{aligned}
\end{aligned}
$$

Exact cancellation of IR and non-analytic contributions to all orders in \boldsymbol{v}

- QCD I-loop corrections
$G^{(1)}=\frac{\alpha_{s} C_{F}}{4 \pi}\left\{2\left[\left(1+\delta^{2}\right) L(\delta)-1\right] \frac{1}{\epsilon_{\mathrm{IR}}}+\left(1+\delta^{2}\right)\left[\frac{\pi^{2}}{\delta}-\frac{i \pi}{\delta} \frac{1}{\epsilon_{\mathrm{IR}}}\right]+\cdots\right\}$,
$H^{(1)}=\frac{\alpha_{s} C_{F}}{4 \pi} \frac{1-\delta^{2}}{m}\left[-\frac{i \pi}{\delta}+\cdots\right]$. Coulomb divergence
- NRQCD I-loop corrections IR divergence $L(\delta)=\frac{1}{2 \delta} \log \left(\frac{1+\delta}{1-\delta}\right)$
$G_{\mathrm{NRQCD}}^{(1)}=\frac{\alpha_{s} C_{F}}{4 \pi}\left\{2\left[\left(1+\delta^{2}\right) L(\delta)-1\right]\left(\frac{1}{\epsilon_{\mathrm{IR}}}-\frac{1}{\epsilon_{\mathrm{UV}}}\right)\right.$

$$
\left.+\left(1+\delta^{2}\right)\left[\frac{\pi^{2}}{\delta}-\frac{i \pi}{\delta} \frac{1}{\epsilon_{\mathrm{IR}}}\right]+\cdots\right\}
$$

$H_{\mathrm{NRQCD}}^{(1)}=\frac{\alpha_{s} C_{F}}{4 \pi} \frac{1-\delta^{2}}{m}\left(-\frac{i \pi}{\delta}\right) \underbrace{}_{14}$ Coulomb divergence

Resummation to all orders in \boldsymbol{v}

- Generalized Gremm-Kapustin relation for spin-independent potential models

$$
\begin{aligned}
{\left[\left\langle\boldsymbol{q}^{2 n}\right\rangle_{H\left({ }^{3} S_{1}\right)}\right]_{\mathrm{MS}}=} & {\left[\left\langle\boldsymbol{q}^{2}\right\rangle_{H\left({ }^{3} S_{1}\right)}\right]_{\mathrm{MS}}^{n} \text { Bodwin, Kang, and Lee (PRD 2006) } } \\
\left\langle\boldsymbol{q}^{2 n}\right\rangle_{H\left({ }^{3} S_{1}\right)} & =\frac{\langle 0| \mathcal{O}_{A n}^{i}\left|H\left({ }^{3} S_{1}\right)\right\rangle}{\langle 0| \mathcal{O}_{A 0}^{i}\left|H\left({ }^{3} S_{1}\right)\right\rangle}
\end{aligned}
$$

- This allows us to resum the relativistic corrections

$$
i \mathcal{A}_{H\left({ }^{3} S_{1}\right)}^{i}=\sqrt{2 m_{H}} C(\delta)\langle 0| \chi^{\dagger} \sigma^{i} \psi|H\rangle
$$

$$
C(\delta)=\left[1-\frac{\left\langle\boldsymbol{q}^{2}\right\rangle}{3 E(E+m)}\right]\left(1+\Delta G_{\frac{11}{\mathrm{MS}}}^{(1)}-\frac{\left\langle\boldsymbol{q}^{2}\right\rangle}{3 E} \Delta H^{(1)}\right.
$$

$$
\delta^{2} \Longrightarrow \frac{\left\langle\boldsymbol{q}^{2}\right\rangle}{m^{2}+\left\langle\boldsymbol{q}^{2}\right\rangle}
$$

Order- α_{s} coefficient of EM current,

 resummed to $v^{2 n}$

MEs are from Bodwin, Chung, Kang, Lee, and Yu (PRD77, 0940I7)

- From the closed-form results, we can show that there is a finite radius of convergence $v<1$.

Summary

- Order- α_{s} corrections to the quarkonium EM current at all orders in v have been computed.
- Only $Q \bar{Q}$ contribution is considered. Neglect of gauge-field contribution results in errors of order \boldsymbol{v}^{4}.
- A new method is introduced to compute NRQCD I-loop corrections directly from QCD amplitude.
- This allows us to obtain very compact expressions for the $Q \bar{Q}$ contributions valid to all orders in \boldsymbol{v}.
- We can use this method to resum a class of relativistic corrections.
- The method may be applied to compute shortdistance coefficients for other effective theories.

Supplementary

A glance at a traditional fixed order calculation...

Luke and Savage (PRD 1998), order $\alpha_{s} v^{2}$
$\alpha_{s} v^{0}$

$\alpha_{s} v^{2}$

Corrections to $\langle 0| \chi^{\dagger} \boldsymbol{\sigma}^{i} \psi|Q \bar{Q}\rangle$
(a) A_{0} temporal
(b) $\boldsymbol{\nabla} \cdot \boldsymbol{A}$ spatial
(c) $\sigma \cdot B$ spatial
(d) $D \cdot E$ temporal
(e) D^{4} quark propagator correction

Corrections to
$\langle 0| \chi^{\dagger}\left(\vec{\nabla} \cdot \sigma \vec{\nabla}^{i}+\overleftarrow{\nabla} \cdot \sigma \overleftarrow{\nabla}^{i}\right) \psi|Q \bar{Q}\rangle$
(f) A_{0} temporal

- It is non-trivial to extend to all orders in v

A glance at a traditional fixed order calculation... Luke and Savage (PRD I998), order $\alpha_{s} v^{2}$

$$
\begin{equation*}
(a)=c_{1} \frac{g^{2}}{12 \pi^{2}} u_{h}^{\dagger} \boldsymbol{\sigma}^{j} v_{h}\left\{\frac{m}{|\overrightarrow{\mathbf{p}}|}\left[\pi^{2}+i \pi\left(\gamma_{E}+\frac{2}{d-4}+\ln \frac{\mathbf{p}^{2}}{\pi \mu^{2}}\right)\right]-\frac{i \pi}{4} \frac{|\mathbf{p}|}{m}\right\} . \tag{4.22}
\end{equation*}
$$

This reproduces the $O(1 / v)$ term in the full amplitude.
As discussed above, there are no graphs at $O\left(g^{2} v^{2 n}\right)$ in NRQCD from radiation gluon loops. At $O\left(g^{2} v\right)$ there are contributions from the leading relativistic corrections to Coulomb scattering. In addition, since Coulomb exchange scales as v^{-1}, the dressing of \mathbf{O}_{2} with a single A_{P}^{0} exchange also contributes at $O\left(g^{2} v\right) . A_{P}^{i}$ exchange contributes both via the $\mathbf{p} \cdot \mathbf{A}$ coupling [Fig. 5(b)]

$$
(b)=c_{1} \frac{g^{2}}{12 \pi^{2}} u_{h}^{\dagger} \boldsymbol{\sigma}^{i} v_{h} \frac{|\mathbf{p}|}{m}\left[\pi^{2}+i \pi\left(\gamma_{E}-1+\frac{2}{d-4}+\ln \frac{\mathbf{p}^{2}}{\pi \mu^{2}}\right)\right]
$$

and the Fermi coupling

$$
(c)=c_{1} \frac{g^{2}}{12 \pi^{2}}\left(u_{h}^{\dagger} \boldsymbol{\sigma}^{i} v_{h} \frac{|\mathbf{p}|}{m}+\frac{m}{|\mathbf{p}|} \frac{u_{h}^{\dagger} \mathbf{p} \cdot \boldsymbol{\sigma} \mathbf{p}^{i} v_{h}}{m^{2}}\right)\left(-\frac{i \pi}{2}\right)
$$

Coulomb exchange is corrected by the Darwin vertex,

$$
(d)=c_{1} \frac{g^{2}}{12 \pi^{2}} u_{h}^{\dagger} \boldsymbol{\sigma}^{i} v_{h} \frac{|\mathbf{p}|}{m}(-i \pi)
$$

while the spin-orbit coupling does not contribute. The relativistic corrections to the quark and antiquark propagators give

$$
(e)=c_{1} \frac{g^{2}}{12 \pi^{2}} u_{h}^{\dagger} \boldsymbol{\sigma}^{i} v_{h} \frac{|\mathbf{p}|}{2 m}\left[\pi^{2}+i \pi\left(\gamma_{E}+\frac{1}{2}+\frac{2}{d-4}+\ln \frac{\mathbf{p}^{2}}{\pi \mu^{2}}\right)\right]
$$

and finally, the one-loop correction to \mathbf{O}_{2} in Fig. 5(f) gives

$$
(f)=-c_{2} \frac{g^{2}}{12 \pi^{2}} \frac{u_{h}^{\dagger} \mathbf{p} \cdot \boldsymbol{\sigma} \mathbf{p}^{i} v_{h}}{m^{2}} \frac{m}{2|\mathbf{p}|}\left[\pi^{2}+i \pi\left(\gamma_{E}-3+\frac{2}{d-4}+\ln \frac{\mathbf{p}^{2}}{\pi \mu^{2}}\right)\right]-c_{2} \frac{g^{2}}{12 \pi^{2}} u_{h}^{\dagger} \boldsymbol{\sigma}^{i} v_{h} \frac{|\mathbf{p}|}{m}\left(\frac{i \pi}{2}\right)
$$

Our results agree with Luke \& Savage at order $\alpha_{s} v^{2}$

