## $B \rightarrow \pi K$ Puzzle and New Physics

## Seungwon Baek (Korea U.)

Tevatron B physics workshop, KISTI, Aug 24, 2009

## Based on

- SB, C-W. Chiang, D. London, PLB675 (2009)
- SB, C-W. Chiang, M. Gronau, D. London, J. L. Rosner, PLB678 (2009)


## Outline

(1) The $B \rightarrow \pi K$ decays as a test of CKM framework
(2) The SM fitting
(3) The NP fitting
(4) Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$
(5) Conclusions

## The $B \rightarrow \pi K$ decays as a test of CKM framework

- Four $B \rightarrow \pi K$ decays, related by isospin

$$
A\left(B^{0} \rightarrow \pi^{-} K^{+}\right)-\sqrt{2} A\left(B^{+} \rightarrow \pi^{0} K^{+}\right)+\sqrt{2} A\left(B^{0} \rightarrow \pi^{0} K^{0}\right)-A\left(B^{+} \rightarrow \pi^{+} K^{0}\right)=0
$$

- In terms of diagrams, Penguin ( $P_{t c}^{\prime}$ and $P_{u c}^{\prime}$ ), tree $\left(T^{\prime}\right)$,
color-suppressed tree ( $C^{\prime}$ ), annihilation $\left(A^{\prime}\right)$, color-favored (suppressed) EW penguin $\left(P_{E W}^{\prime(C)}\right)$,

$$
\begin{align*}
A^{+0} & =-P_{t c}^{\prime}+P_{u c}^{\prime} e^{i \gamma}+A^{\prime} e^{i \gamma}-\frac{1}{3} P_{E W}^{\prime C}, \\
\sqrt{2} A^{0+} & =+P_{t c}^{\prime}-P_{u c}^{\prime} e^{i \gamma}-T^{\prime} e^{i \gamma}-C^{\prime} e^{i \gamma}-A^{\prime} e^{i \gamma}-P_{E W}^{\prime}-\frac{2}{3} P_{E W}^{\prime C} \\
A^{-+} & =+P_{t c}^{\prime}-P_{u c}^{\prime} e^{i \gamma}-T^{\prime} e^{i \gamma}-\frac{2}{3} P_{E W}^{\prime C}, \\
\sqrt{2} A^{00} & =-P_{t c}^{\prime}+P_{u c}^{\prime} e^{i \gamma}-C^{\prime} e^{i \gamma}-P_{E W}^{\prime}-\frac{1}{3} P_{E W}^{\prime C} . \tag{1}
\end{align*}
$$

## The $B \rightarrow \pi K$ decays as a test of CKM framework

- Or more compactly,

$$
\begin{align*}
A^{+0} & =p^{\prime}, \\
\sqrt{2} A^{0+} & =-p^{\prime}-t^{\prime}-c^{\prime}, \\
A^{-+} & =-p^{\prime}-t^{\prime}, \\
\sqrt{2} A^{00} & =p^{\prime}-c^{\prime}, \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
p^{\prime} & =-P_{t c}^{\prime}+P_{u c}^{\prime} e^{i \gamma}-\frac{1}{3} P_{E W}^{C} \\
t^{\prime} & =T^{\prime} e^{i \gamma}+P_{E W}^{C} \\
c^{\prime} & =C^{\prime} e^{i \gamma}+P_{E W}^{\prime} \tag{3}
\end{align*}
$$

- We can see $\left(T^{\prime} e^{i \gamma}, P_{E W}^{\prime C}\right)$ and $\left(C^{\prime} e^{i \gamma}, P_{E W}^{\prime}\right)$ appear together.


## The $B \rightarrow \pi K$ decays as a test of CKM framework

- Using flavor SU(3), we can relate the EWP to the trees: Neubert, Rosner(1998), Gronau, Pirjol, Yuan (1999)

$$
\begin{aligned}
& P_{E W}^{\prime} \approx-0.60 T^{\prime} \\
& P_{E W}^{\prime C} \approx-0.60 C^{\prime} .
\end{aligned}
$$

- Hierarchy between the diagrams: Gronau, Hernandez, London, Rosner(1994,1995)

$$
\begin{array}{ccc}
1 & : & P_{t c}^{\prime} \\
\mathscr{O}(\bar{\lambda}) & : & \left|T^{\prime}\right|, P_{E W}^{\prime} \\
\mathscr{O}\left(\bar{\lambda}^{2}\right) & : & \left|C^{\prime}\right|, P_{u c}^{\prime}, P_{E W}^{\prime C} \\
\mathscr{O}\left(\bar{\lambda}^{3}\right) & : & \left|A^{\prime}\right|
\end{array}
$$

$\bar{\lambda}=0.2-0.3$

## The experimental data as of 2009 (2007)

| Mode | $\mathscr{B}\left(10^{-6}\right)$ | $A_{C P}$ | $S_{C P}$ |
| :---: | :---: | :---: | :---: |
| $B^{+} \rightarrow \pi^{+} K^{0}$ | $23.1 \pm 1.0$ | $0.009 \pm 0.025$ |  |
|  | $(23.1 \pm 1.0)$ | $(0.009 \pm 0.025)$ |  |
| $B^{+} \rightarrow \pi^{0} K^{+}$ | $12.9 \pm 0.6$ | $0.050 \pm 0.025$ |  |
|  | $(12.8 \pm 0.6)$ | $(0.047 \pm 0.026)$ |  |
| $B^{0} \rightarrow \pi^{-} K^{+}$ | $19.4 \pm 0.6$ | $-0.098_{-0.011}^{+0.012}$ |  |
|  | $(19.7 \pm 0.6)$ | $(-0.093 \pm 0.015)$ |  |
| $B^{0} \rightarrow \pi^{0} K^{0}$ | $9.8 \pm 0.6$ | $-0.01 \pm 0.10$ | $0.57 \pm 0.17$ |
|  | $(10.0 \pm 0.6)$ | $(-0.12 \pm 0.11)$ | $(0.33 \pm 0.21)$ |

$A_{C P}\left(\pi^{-} K^{+}\right)$vs $A_{C P}\left(\pi^{0} K^{+}\right)$

- If $\left|C^{\prime}\right| \ll\left|T^{\prime}\right|, A_{C P}\left(\pi^{-} K^{+}\right) \approx A_{C P}\left(\pi^{0} K^{+}\right)$.
- However, the data show,
$A_{C P}\left(\pi^{0} K^{+}\right)-A_{C P}\left(\pi^{-} K^{+}\right)=0.148 \pm 0.028(5.3 \sigma)$.
NP? Belle collaboration, Nature (2008); M. Peskin, Nature (2008)
- $\left|C^{\prime} / T^{\prime}\right|=0.58$ and large negative $\arg \left(C^{\prime} / T^{\prime}\right)$ can account for the difference.
- $\left|C^{\prime} / T^{\prime}\right|=0.58$ is okay with QCD calculations.

Bauer, Pirjol, Rothstein, Stewart, PRD(2004); Bauer, Rothstein, Stewart, PRL(2005)
Beneke and Jager, NPB(2006)
Li and Mishima, arXiv:0901

- large negative $\arg \left(C^{\prime} / T^{\prime}\right)$ is accounted for only in Li and Mishima, arXiv:0901


## The SM Fit 1

| $\chi_{\text {min }}^{2} /$ d.o.f. $($ c.l. $)$ | $\left\|P_{t c}^{\prime}\right\|$ | $\left\|T^{\prime}\right\|$ | $\left\|C^{\prime}\right\|$ | $\left\|P_{u c}^{\prime}\right\|$ |
| :---: | :---: | :---: | :---: | :---: |
| $0.52 / 1(47 \%)$ | $67.7 \pm 11.8$ | $19.6 \pm 6.9$ | $14.9 \pm 6.6$ | $20.5 \pm 13.3$ |
| $\delta_{T^{\prime}}$ | $\delta_{C^{\prime}}$ | $\delta_{P_{u c}^{\prime}}$ | $\beta$ | $\gamma$ |
| $(6.0 \pm 4.0)^{\circ}$ | $(-11.7 \pm 6.8)^{\circ}$ | $(-0.7 \pm 2.3)^{\circ}$ | $(21.66 \pm 0.95)^{\circ}$ | $(35.3 \pm 7.1)^{\circ}$ |

Table: Results of the fit to $P_{t c}^{\prime}, T^{\prime}, C^{\prime}, P_{u c}^{\prime}, \beta$ and $\gamma$ in the SM . The fit includes the constraint $\beta=\left(21.66_{-0.87}^{+0.95}\right)^{\circ}$. The amplitude is in units of eV .

- Better fit than to 2007 data (SB and D. London, PLB(2007)) where

$$
\left|C^{\prime} / T^{\prime}\right|=1.6 \pm 0.3
$$

- Still $\gamma$ too small. cf) CKM fit $\gamma=\left(66.8_{-3.8}^{+5.4}\right)^{\circ}$.
- $\left|P_{u c}^{\prime}\right|$ is large so is its error.


## The SM Fit 2

| $\chi_{\text {min }}^{2} /$ d.o.f. | $\left\|P_{t c}^{\prime}\right\|$ | $\left\|T^{\prime}\right\|$ | $\left\|C^{\prime}\right\|$ | $\left\|P_{u c}^{\prime}\right\|$ |
| :---: | :---: | :---: | :---: | :---: |
| $3.2 / 2(20 \%)$ | $50.5 \pm 1.8$ | $5.9 \pm 1.8$ | $3.4 \pm 1.0$ | $2.3 \pm 4.9$ |
| $\delta_{T^{\prime}}$ | $\delta_{C^{\prime}}$ | $\delta_{P_{u c}^{\prime}}$ | $\beta$ | $\gamma$ |
| $(25.5 \pm 11.2)^{\circ}$ | $(252.0 \pm 36.1)^{\circ}$ | $(-9.9 \pm 27.8)^{\circ}$ | $(21.65 \pm 0.95)^{\circ}$ | $(66.5 \pm 5.5)^{\circ}$ |

Table: Results of the fit to $P_{t c}^{\prime}, T^{\prime}, C^{\prime}, P_{u c}^{\prime}, \beta$ and $\gamma$ in the SM . The fit includes the constraints $\beta=\left(21.66_{-0.87}^{+0.95}\right)^{\circ}$ and $\gamma=\left(66.8_{-3.8}^{+5.4}\right)^{\circ}$. The amplitude is in units of eV .

- The quality of fit becomes poorer than (I).
- $\left|T^{\prime} / P_{t c}^{\prime}\right|$ small.


## Predictions of the $B \rightarrow \pi K$ observables

| Obs. | Fit 1 | Fit 2 |
| :---: | :---: | :---: |
| $B R\left(\pi^{+} K^{0}\right)$ | $23.1(+0.02)$ | $23.7(-0.57)$ |
| $A_{C P}\left(\pi^{+} K^{0}\right)$ | $0.014(-0.21)$ | $0.016(-0.29)$ |
| $B R\left(\pi^{0} K^{+}\right)$ | $12.9(-0.03)$ | $12.5(+0.72)$ |
| $A_{C P}\left(\pi^{0} K^{+}\right)$ | $0.05(+0.15)$ | $0.04(+0.27)$ |
| $B R\left(\pi^{-} K^{+}\right)$ | $19.4(+0.05)$ | $19.7(-0.46)$ |
| $A_{C P}\left(\pi^{-} K^{+}\right)$ | $-0.098(-0.04)$ | $-0.097(-0.12)$ |
| $B R\left(\pi^{0} K^{0}\right)$ | $9.8(-0.07)$ | $9.3(+0.88)$ |
| $A_{C P}\left(\pi^{0} K^{0}\right)$ | $-0.08(+0.66)$ | $-0.12(+1.10)$ |
| $S_{C P}\left(\pi^{0} K^{0}\right)$ | $0.58(-0.03)$ | $0.58(-0.08)$ |

Table: Predictions of the $B \rightarrow \pi K$ decay observables. Numbers in parentheses are the corresponding pulls. pull $\equiv$ (data-theory prediction)/(data error)

## Predictions of the $B \rightarrow \pi K$ observables

- The prediction $A_{C P}\left(\pi^{0} K^{0}\right)=-0.12$ has the largest deviation from the data.
- BaBar and Belle data are inconsistent in the central values of $A_{C P}\left(\pi^{0} K^{0}\right)$.

| Source | $N(B \bar{B})(\mathrm{M})$ | $A_{C P}\left(\pi^{0} K^{0}\right)$ |
| :---: | :---: | :---: |
| BaBar | 467 | $-0.13 \pm 0.13 \pm 0.03$ |
| Belle | 657 | $0.14 \pm 0.13 \pm 0.06$ |
| Average | 1124 | $-0.01 \pm 0.10$ |

- The SM favors the BaBar data.


## NP contributions

- $p^{\prime} \rightarrow p^{\prime}+P_{\mathrm{NP}}^{\prime} e^{i \Phi_{P}^{\prime}}$ (NP Fit 1)
- $c^{\prime} \rightarrow c^{\prime}+P_{\mathrm{EW}, \mathrm{NP}}^{\prime} e^{i \Phi_{\mathrm{EW}}^{\prime}}$ (NP Fit 2)
- $t^{\prime} \rightarrow t^{\prime}+P_{\mathrm{EW}, \mathrm{NP}}^{\prime \mathrm{C}} e^{i \Phi_{\mathrm{EW}}^{\prime C}}$ (NP Fit 3)
- NP strong phase is small, $\delta_{\mathrm{NP}}=\delta_{T^{\prime}}$ A. Datta and D. London,

PLB(2004)

- For NP fits, we impose $\beta=\left(21.66_{-0.87}^{+0.95}\right)^{\circ}$ and $\gamma=\left(66.8_{-3.8}^{+5.4}\right)^{\circ}$

| NP $1 \chi^{2} /$ d.o.f. | $\left\|P_{t c}^{\prime}\right\|$ | $\left\|T^{\prime}\right\|$ | $\left\|C^{\prime}\right\|$ |
| :---: | :---: | :---: | :---: |
| $3.6 / 2(17 \%)$ | NA | $5.9 \pm 2.0$ | $3.6 \pm 1.0$ |
| $\left\|P_{N P}^{\prime}\right\|$ | $\delta_{C^{\prime}}$ | $\delta_{N P}$ | $\Phi_{P}^{\prime}$ |
| NA | NA | NA | NA |
| NP $2 \chi^{2} /$ d.o.f. | $\left\|P_{t c}^{\prime}\right\|$ | $\left\|T^{\prime}\right\|$ | $\left\|C^{\prime}\right\|$ |
| $0.4 / 2(82 \%)$ | $48.2 \pm 1.3$ | $2.6 \pm 0.4$ | $16.1 \pm 28.4$ |
| $\left\|P_{E W, N P}^{\prime}\right\|$ | $\delta_{C^{\prime}}$ | $\delta_{N P}$ | $\Phi_{E W}^{\prime}$ |
| $20.1 \pm 22.3$ | $(254.8 \pm 21.8)^{\circ}$ | $(95.4 \pm 9.6)^{\circ}$ | $(37.6 \pm 51.8)^{\circ}$ |
| NP 3 $\chi^{2} /$ d.o.f. | $\left\|P_{t c}^{\prime}\right\|$ | $\left\|T^{\prime}\right\|$ | $\left\|C^{\prime}\right\|$ |
| $2.5 / 2(28 \%)$ | $48.2 \pm 1.3$ | $1.9 \pm 1.4$ | $9.4 \pm 2.3$ |
| $\left\|P_{E W, N P}^{\prime C}\right\|$ | $\delta_{C^{\prime}}$ | $\delta_{N P}$ | $\Phi_{E W}^{\prime C}$ |
| $16.5 \pm 15.2$ | $(192.4 \pm 12.3)^{\circ}$ | $(97.8 \pm 15.3)^{\circ}$ | $(183.9 \pm 7.8)^{\circ}$ |

Predicts too large $C^{\prime}$ in the 2nd and 3rd case.

## Predictions of $A_{C P}\left(\pi^{0} K^{0}\right)$

| SM 2 | NP 1 (P) | NP 2 (EW) | NP 3 (EWC) | NP (2+3) |
| :---: | :---: | :---: | :---: | :---: |
| -0.12 | -0.12 | +0.10 | -0.03 | -0.03 |

- The predictions of $A_{C P}\left(\pi^{0} K^{0}\right)$ are very distictive depending on models.
- Therefore, $A_{C P}\left(\pi^{0} K^{0}\right)$ can be used to distinguish different models, if theoretical and experimental errors are controllable. SB, C-W.
Chiang, M. Gronau, D. London, J. L. Rosner, arXiv:0905.1495


## Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$

- In the $\mathrm{SM}, A_{C P}\left(\pi^{0} K^{0}\right)$ can be predicted quite reliably.
- The dominant $\Delta I=0$ term $\left(p^{\prime}\right)$ is canceled in

$$
\begin{aligned}
& 2\left|A^{0+}\right|^{2}+2\left|A^{00}\right|^{2}-\left|A^{+0}\right|^{2}-\left|A^{-+}\right|^{2} \\
= & \left|p^{\prime}+t^{\prime}+c^{\prime}\right|^{2}+\left|p^{\prime}-c^{\prime}\right|^{2}-\left|p^{\prime}+t^{\prime}\right|^{2}-\left|p^{\prime}\right|^{2} \\
= & 2\left(\left|c^{\prime}\right|^{2}+\operatorname{Re}\left(t^{\prime} c^{\prime *}\right)\right)
\end{aligned}
$$

The RHS is small compared with the dominant $\left|p^{\prime}\right|^{2}$ in the SM.

## Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$

- Sum rule for the branching ratios M. Gronau and J. L. Rosner, PRD(1999), H. J. Lipkin, PLB(1999)
$2 \mathscr{B}\left(\pi^{0} K^{+}\right)+2\left(\tau_{+} / \tau_{0}\right) \mathscr{B}\left(\pi^{0} K^{0}\right)=\left(\tau_{+} / \tau_{0}\right) \mathscr{B}\left(\pi^{-} K^{+}\right)+\mathscr{B}\left(\pi^{+} K^{0}\right)$.
where $\tau_{+} / \tau_{0}=1.073 \pm 0.008$
- Numerically

$$
46.8 \pm 1.8=43.9 \pm 1.2(1.3 \sigma)
$$

- The $\mathscr{B}$ has been measured precisely and all the SM and NP fits confirm the rate sum rule.


## Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$

- Sum rule for the $A_{C P}$ M. Gronau, $\operatorname{PLB}(2005)$

$$
A_{C P}\left(\pi^{-} K^{+}\right)+A_{C P}\left(\pi^{+} K^{0}\right) \simeq A_{C P}\left(\pi^{0} K^{+}\right)+A_{C P}\left(\pi^{0} K^{0}\right)
$$

where $\mathscr{B}\left(\pi^{0} K^{+}\right): \mathscr{B}\left(\pi^{0} K^{0}\right): \mathscr{B}\left(\pi^{-} K^{+}\right): \mathscr{B}\left(\pi^{+} K^{0}\right)=1: 1: 2: 2$ is assumed.

- Prediction $A_{C P}\left(\pi^{0} K^{0}\right)=-0.139 \pm 0.037$
- Taking into account of the correct values of $\mathscr{B}$,
$A_{C P}\left(\pi^{0} K^{0}\right)=-0.149 \pm 0.044$
- These sum rule predictions of $A_{C P}\left(\pi^{0} K^{0}\right)$ are consistent with the values obtained in the SM fits: $A_{C P}\left(\pi^{0} K^{0}\right)=-0.08$ (SM Fit 1) -0.12 (SM Fit 2)


## Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$

- Sum rules can be significantly violated with the presense of sizable $\Delta I=1$ NP amplitude.
- With $P_{1} \equiv P_{E W, N P}$ and $P_{2} \equiv P_{E W, N P}^{C}$, the terms violating the rate sum rule are

$$
2\left[\left|P_{1}\right|^{2}+\left|P_{1}\right|\left|P_{2}\right| \cos \left(\delta_{1}-\delta_{2}\right) \cos \left(\phi_{1}-\phi_{2}\right)\right],
$$

where $\delta_{1}, \delta_{2}$ and $\phi_{1}, \phi_{2}$ are the strong and weak phases of $P_{1}$ and $P_{2}$.

- The term violating the asymmetry sum rule is

$$
2\left|P_{1}\right|\left|P_{2}\right| \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right),
$$

which is violated significantly only when $P_{1} \neq 0, P_{2} \neq 0, \delta_{1} \neq \delta_{2}$ and $\phi_{1} \neq \phi_{2}$

## Sum rules and $A_{C P}\left(\pi^{0} K^{0}\right)$

| Model | $A_{C P}\left(\pi^{0} K^{0}\right)$ | LHS of rate SR | RHS of rate SR |
| :---: | :---: | :---: | :---: |
| SM 2 | -0.12 | 44.8 | 44.8 |
| NP 1 | -0.12 | 44.9 | 44.8 |
| NP 2 | +0.10 | 46.9 | 43.9 |
| NP 3 | -0.03 | 45.3 | 44.6 |
| NP (2+3) | -0.03 | 47.0 | 43.8 |

- NP models can violate the asymmetry sum rule significantly while preserving the rate sum rule.


## Conclusions

- While the $B \rightarrow \pi K$ puzzle has not disappeared, it has become weaker.
- The SM predicts $A_{C P}\left(\pi^{0} K^{0}\right)=-0.149 \pm 0.044$, whose world average is $-0.01 \pm 0.10$.
- More precise measurement of $A_{C P}\left(\pi^{0} K^{0}\right)$ will allow the probe of NP in $\Delta I=1$ transition amplitude.

