

Korean Belle Data Grid and Analysis of $B \rightarrow \phi \pi$ decays in Belle.

J.H Kim¹

¹Sungkyunkwan University, Suwon

Invitation in KISTI, 2008.11.21

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
Outline				

The problems

- Why We need to use the supercomputing in many fields?
 - The semiconductor Technology has the limitation.
 - \rightarrow We can't overcome the Relativity effect in semiconductor material.
 - The OS development is so slow.
 → From 32bit to 64bit, it take over 10 years. From 64bit to 128bit How long time..?? Can you confirm..??

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
The proble	me			

- Why We need to use the supercomputing in HEP?
 - The Hig Energy Physicists want to explore the beyond Standard Model(SM).
 - To explore the SM, The resources are not so bad.
 - \rightarrow The measurements of branching fraction is larger than 10^{-6}
 - To explore the beyond SM, How order is it needed ?
 - \rightarrow The measurements of branching fraction is less than 10^{-7}

The current status in Belle experiment.

- We have $656.725 \pm 8.940 \times 10^6$ events, $605 fb^{-1}$, to use for the *B* physics in Belle experiment.
 - \rightarrow What is the mean?
 - The data are stored in 144.72 Gbytes per $1fb^{-1}$.
 - At least, we need 95.04Tbytes for the analysis of *B* physics.
- Is this all ?
- Super Belle is × 50 than now!!!!

• The integral luminosity of Super Belle experiment.

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
Accelerato	or			

- Beam: $e^+(3.5GeV)$, $e^-(8.0GeV)$
- The center of mass is 10.58GeV.
- Ring Circumference:3016.26m
- Detector location : TSUKUBA area.

	Dene unurysis	Rolea Delle Dala Gliu	Study of $B \rightarrow \phi \pi$ decays
Detector			

 SVD: vertex point

• CDC:

momentum and dE/dx of charged particle

 ACC(PID): kaon and pion seperation(1.2 ~ 3.5GeV/c)

• TOF:

kaon and pion seperation($0.6 \sim 1.2 GeV/c$)

 ECL: energy measurement

KLM:

measurement the direction of K_L and to identify muon

Belle DAQ system

- From detector, We get the informations of the final stats particle
- The useful data is made from DAQ system for analysis.

Belle Data

- What kind of the data set do you want to get ?
- Find the data at here.

Belle Search Engine ver 3.20

Belle Data type for the anaysis

Data for <i>B</i> physics.		MC for <i>B</i> physics.	
data	size	MC	size
on-resonance	605fb ⁻¹ (95.04TB)	uds of on-resonance	$605 fb^{-1} \times 10/4$ (396TB)
off-resonance	68.2fb ⁻¹ (5.5TB)	charm of on-resonance	$605 fb^{-1} \times 10/4$ (396TB)
skim data	$605 fb^{-1} \times 30$	mixed of on-resonance	$605 fb^{-1} \times 10/4$ (132TB)
		charged of on-resonance	$605 fb^{-1} \times 10/4$ (132TB)
		uds of off-resonance	$68.2 fb^{-1} \times 10/4$ (41.3TB)
		charm of off-resonance	$68.2 fb^{-1} \times 10/4$ (41.3TB)
		rare B MC	$25000 fb^{-1}$

- Although the rare B MC and each topic skim data are small size, the others are not.
- At least, we need $(1151.8 + \alpha)$ Tbytes storage for *B* physics in Belle.

Analysis for *B* physics

- A user is assigned 300Gbytes storage for analysis.
- Do you have the sufficient storage ? → Not so bad.
- We need the computing power.

Computing power in Belle experiment

Computing power in Belle experiment

- How to use the B computer.
- We can get a account for analysis.
 - LGI: These are used when you login to the B-Factory computer system from Internet.
 - WG: These are used when you do interactive processing, like edit programs, compile programs, submit jobs.
 - SC:These are used for running batch jobs.

0	6	7	7	1	3	6	2	9	5	2	7	5	3	4	6
2	6	6	8	9	1	4	8	1	5	0	9	4	8	7	7
0	9	9	2	8	0	0	5	4	5	2	1	5	0	3	1
4	7	3	5	9	0	3	7	9	1	8	8	5	0	8	9
					G	iet a	agai		Clo	ose]				

- For analysis and MC production →
 We should use the SC nodes, which are composed on 1140 node.
- batch job system : LSF
- A user is assigned with maximum 20 node.
- Almost people complain to be assigned with the limitation.
- All node was offered by DELL.

sy	stem configuratior	l.				
	Type of Server	CPU	Num of CPUs	Amount of Memory	Type of Network	Num.
	LGI	Xeon3.6GHz	2	1GB	GigabitEthernet	3
	WG	Xeon3.6GHz	2	1GB	GigabitEthernet	80
	SC	Xeon3.6GHz	2	1GB	GigabitEthernet	1140

Computing power in Belle experiment

Data control for analysis					
data type	size	Num. of events	time/events	Time	Result
Data skim	95.04TB	658×10 ⁶	2min/10K	8.19 days	skim files
MC skim	1056.0TB	6580×10^{6}	2min/10K	91.00 days	skim files
Signal MC production	4.2GB		8hours/30K	3.3 days	mdst data
analysis run	58.08TB	658×10^{6}	2min/10K	5.01days	ntuple or root
	•		-		

How much do the resources need to work in Super Belle ?
 → Super Belle data will be × 50 for all !!

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of ${\scriptscriptstyle B} ightarrow \phi \pi { m decays}$

The scheme of Korea Belle Data Grid

Schemer: JungHyun Kim(SKKU)

component	purpose	site	development	CPU	OS	middleware	date(year.month)
UI	user interface	hepgrid.skku.ac.kr	0	intel 2.4GHz	linux	globus 2.4	2003.11
VU	virtual user	cluster76.knu.ac.kr	0	AMD 2.0GHz	linux	globus 2.4	2003. 8
CE	computing element	cluster76.knu.ac.kr	0	intel 2.4GHz	linux	globus 2.4	2002. 12
RB	resource broker		х			globus 2.4	
SE	storage element	hep.skku.ac.kr	х	intel 2.4GHz	linux		
Node	computing node	local IP(4)	0	intel 2.0(SMP)	linux		2002. 12
UI on website	portal and GUI	hepgrid.skku.ac.kr	0	intel 2.0(SMP)	linux	globus 2.4	2004. 1
CA on website	CA	hepgrid.skku.ac.kr	0	intel 2.4	linux	globus 2.4	2004. 1

Development:

- UI,VI,CE,Nodes(JungHyun Kim)
- CA(gridca-1.1.1)(KISTI),modify(JungHyun Kim, SunMin Kim)
- UI on website (JungHyun Kim, SunMin Kim)

• Connection with Belle library and Globus tool kit.

Website of Korea Belle Data Grid

• The monitor system of Korea Belle Data Grid

- UI: hepgrid.skku.ac.kr
- OS : linux item Design :JungHyun Kim
- development :JungHyun Kim, SunMin Kim, KISTI(gridca-1.1.1)

• The difference of the result is less than 1 event.

.

• The difference of CPU time is shown as the Table.

By SunMin Kim M.S thesis.

	KISTI nodes(30 nodes)	Belle nodes(20 nodes)
relative CPU time	18 hours 21 min 6 sec	53hours 46 min 47 sec

<u>n1</u>	at	2

Introduction

- The measurements of B → φπ decay rates is important... contribution beyond the Standard Model(SM)
- Strongly suppressed in the SM.
- The measurement of BABAR(2007) is $\leq 10^{-7}$
- The $B^0 \rightarrow \phi \pi^0$ decay is associated with measurements of time dependent *CP* asymmetry in $B^0 \rightarrow \phi K^0$.

The Dataset and Skim Criteria

The Dataset

type	Luminosity
each decays signal MC	300K number of events based on exp51(420MB/30Kevent)
qq MC	2480fb ⁻¹ (649.31TB)
$b \rightarrow c \ MC$	3501fb ⁻¹ (305.54TB)
$b \rightarrow u, d, s MC$	$24850 fb^{-1}(unknown)$
data	605fb ⁻¹ (95.04TB)

Skim Criteria

Source	Requirement
Charged K Tracks	atc_pidKpi(3, 1, 5, 3, 2) > 0.1
Charged π Tracks	$atc_pidKpi(3, 1, 5, 3, 2) < 0.0$ (not applyed)
π^0 invariant mass	$0.08 GeV < M_{\gamma \gamma} < 0.18 GeV$
ϕ invariant mass	$1.8GeV > M_{(K+K^-)}$
ΔE and M_{bc}	$ \Delta E < 0.42 GeV$ and $M_{bc} > 5.19 GeV$

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
Reconstruc	tion			

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
Reconstruc	tion			

Particle Identification(PID)

- Signal : $B \rightarrow \phi \pi$ decay
- Noise : qq and $b \rightarrow u, d, s$ background
- Corr. factor :discrepancy of MC vesus data for the continuum candidates
- Iteration with continuum suppression

The results

decay	Kaon ID	π ID
$B^0 \rightarrow \phi \pi^0$	> 0.3	
$B^+ \rightarrow \phi \pi^+$	> 0.3	< 0.2

$Cos(\theta_{R}^{*})$ and $Cos(\theta_{Helicity})$

- $Cos(\theta_{R}^{*})$
 - θ^{*}_B is defined as the angle of the B meson flight direction with respect to the beam axis.
 - The angular momentum conservation
 - Signal: spherical
 - Continuum: jet-like(flat)
 - $cos\theta_{B^*} = P_0 P_1 cos^2 \theta_{B^*}$

• $Cos(\theta_{Helicity})$

• θ_H is defined as the angle between K^+ direction and the *B* meson direction in the ϕ mass rest frame.

•
$$cos\theta_H = P_0 - P_1 cos^2 \theta_H$$

assymetric life-time convolute with the gaussian in signal events

$$LF \otimes R = \exp(-|x|/\tau) \otimes R = \int_{-\infty}^{-\infty} \exp(-|x-\mu|/\tau) * \exp[-0.5 * (\frac{x-M_{mean}}{\sigma})^2] d\mu$$
(1)

• δ function convolute with the gaussian in continuum events.

$$\delta \otimes R = R_1 + R_2 + R_3 \tag{2}$$

Likelihood Ratio(KSFW, $Cos(\theta_B^*)$, ΔZ , $Cos(\theta_H)$)

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
$q \bullet r$				

- $q(+1 = B^0, -1 = \overline{B^0})$
- $r (= 1-2w)(0 \rightarrow 1$: better tagging quality)

part1: signal < continuum, part2:signal ~ continuum, part3: signal > continuum

Figure of Merit(KSFW, $Cos(\theta_B^*)$, ΔZ , $Cos(\theta_H)$) dependent on $q \bullet r$

Figure of Merit(KSFW, $Cos(\theta_B^*), \Delta Z, Cos(\theta_H), q \bullet r$) dependent on $q \bullet r$

$b \rightarrow c$ background

	$B^0 \rightarrow \phi \pi^0$	$B^+ \rightarrow \phi \pi^+$
remained evt	16	41
Expectation(605fb-1)	2.76	7.08

$\Delta E, M_{bc}$ distribution for $b \rightarrow c$ background(left:neutral, right:charged)

$b \rightarrow u, d, s$ background

$\Delta E, M_{bc}$ distribution for $b \rightarrow u, d, s$ ENTRIES ional Bo MBC about the ra ENTRIES gnal Box 200 250 200 150 2 5225 535 5375 MBC about the rareB decay out the rareB decays

• $b \rightarrow u, d, s$ background

Decay Mode	Br(10 ⁻⁶)	remained evt	Expectation(605fb-1)
$B^0 \rightarrow \phi \omega$	< 1.2	5	0.12
$B^0 \rightarrow \phi K_S$	= 8.6	202	4.91
$B^{\pm} \rightarrow \phi \rho^{\pm}$	= 0.45	27	0.66
$B^0 \rightarrow K^+ K^- \pi^0$	< 19	28	0.68
$B^0 \rightarrow a_0{}^0 \pi^0$		14	0.34
$B^0 \rightarrow f_0 \pi^0$		22	0.54
other decays		158	3.84
$B^{\pm} \rightarrow \phi K^{\pm}$	= 8.3	1205	29.32
$B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$	< 6.3	7	0.17
$B^{\pm} \rightarrow a_0{}^0 \pi^{\pm}$	< 5.8	273	6.64
$B^{\pm} \rightarrow f_0 \pi^{\pm}$		4	0.10
other decays		168	4.08

PDF component

• The PDF components of ${\it B}^0
ightarrow \phi \pi^0$ decay

Component	ΔE	M_{bc}
signal	Crystall Ball	Gaussian
continuum	Chebyshev polynomial 1st	ARGUS background
$b \rightarrow c$	histogram to PDF	histogram to PDF
$b \rightarrow u, d, s$	histogram to PDF	histogram to PDF

• The PDF components of $B^+ \rightarrow \phi \pi^+$ decay

Component	ΔE	M_{bc}
signal	double Gaussian	Gaussian
continuum	Chebyshev polynomial 1st	ARGUS background
$b \rightarrow c$	histogram to PDF	histogram to PDF
$b \rightarrow u, d, s$ (dominant)	double Gaussian	Gaussian
$b \rightarrow u, d, s$ (the rest of backgound)	histogram to PDF	histogram to PDF

MC Fit of $B^0 \rightarrow \phi \pi^0$ decay

MC Fit of $B^- \rightarrow \phi \pi^-$ decay

. 0

Toy MC

 The re 	The result of $B^{\circ} \rightarrow \phi \pi^{\circ}$		
parameter	$mean(\mu)$	$sigma(\sigma)$	
nSig	6.93±0.10	2.954±0.078	
pull	-0.06229 ± 0.03223	0.9587±0.0238	

. 0

•	The result of B^+	\rightarrow	ϕ_{π} +	

parameter	$mean(\mu)$	$sigma(\sigma)$
nSig	13.988±0.18	5.388±0.130
pull	-0.05242 ± 0.03297	0.9679±0.0265

GSIM linearity test

Calibration for $B^0 \rightarrow \phi \pi^0$

	${}^B{}^0 ightarrow \phi \pi^{0} { m MC}$	$B^0 \rightarrow \overline{D^0} \pi^0 \text{ MC}$	${}^B{}^0 \rightarrow \overline{{}^D{}^0} \pi^0$ data	${}^{B^0} ightarrow \phi \pi^0$ data
μ	-0.001096	0.002881	-0.00218	-0.006157
σ	0.03215	0.02896	0.0335	0.03719
٩	control sample	$: B^0 \to \overline{D^0} \pi^0$		
٩	$\mu_{\phi\pi^0}{}^{data} = \mu_{\phi\pi}$	$_0{}^{MC}$ + $(\mu_{D\pi}^{})^{data}$ ·	$-\mu_{D\pi^0}{}^{MC})$	
٩	$\sigma_{\phi\pi^0}{}^{data} = \sigma_{\phi\pi}$	$_{0}^{MC} \times (\sigma_{D\pi} _{0}^{data})$	$(\sigma_{D\pi^0}{}^{MC})$	

Calibrations for $B^+ \rightarrow \phi \pi^+$, $B^+ \rightarrow \phi K^+$ Background

• $B^+ \rightarrow \phi \pi^+$ calibration			
prob(K/pi)	0.6		
σ_1	0.0173		
σ_2	0.0076		
μ	0.00049		
frac	0.81		
• $B^+ \rightarrow \phi K^+$ Background calibration			
prob(K/pi)	0.6		
σ_1	0.0102		
σ_2	0.0209		
μ	-0.04454		
frac	0.37		
nSig	268		
• expectation : 19.77(357 <i>fb</i> ⁻ 1)			

Data Fit of $B^0 \rightarrow \phi \pi^0$ decay: with $a^{00} \pi^0$ component

Data Fit of $B^+ \rightarrow \phi \pi^+$ decay : with $K^+ K^- \pi^+$ component

systematics of $B \rightarrow \phi \pi$ decays for $357 fb^{-1}$

Туре		$B^0 ightarrow \phi \pi^0$		$B^+ \rightarrow \phi \pi^+$	
		$+\sigma$	$-\sigma$	$+\sigma$	$-\sigma$
M_{bc}	σ_A	0.07	-0.08	0.08	-0.07
ΔE	σ_A	0.13	-0.15	0.49	-0.67
ΔE range	σ_A	0.07	-0.0	-	-
$b \rightarrow qq$	σ_A	0.26	-0.26	0.89	-0.89
$b \rightarrow c, b \rightarrow u, d, s$ background	σ_A	0.02	-0.04	0.77	-0.89
The non resonance	σ_A	+0.21	-0.34	0.9	-2.88
The fitting bias	σ_A	0.20	-	0.33	-
MC acceptance	σ_M	+0.9%	-0.9%	+0.6%	-0.6%
PID	σ_M	+1.3%	-1.3%	+2.0%	-2.0%
Tracking	σ_M	+2.0%	-2.0%	+3.1%	-3.1%
π^0 detection efficiency	σ_M	+3.0%	-3.0%	-	-
MDLR efficiency	σ_M	+11.1%	-11.1%	+7.1%	-7.1%
$N_{B\overline{B}}$	σ_M	+1.2%	-1.2%	+1.2%	-1.2%

Motivation	Belle experiments	Belle analysis	Korea Belle Data Grid	Study of $B \rightarrow \phi \pi$ decays
Plan				

- $357 fb^{-1} \rightarrow$ Graduation thesis.
- $605 fb^{-1} \rightarrow$ Will be submitted to PRD.
- We find the interesting something. B⁺ → K⁺K⁻π⁺ final stat has a peak in the side band in the viewpoint of M(K⁺K⁻).
 → The peak has high probability of B⁺ → a₀⁰π⁺.
- We have the similar modes $B \rightarrow \phi \rho$.
 - \rightarrow Nobody study the modes.